0000000000324805

AUTHOR

Christian Henninger

Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents

HMG-CoA reductase inhibitors (statins) are widely used in the therapy of hypercholesterolemia. Apart from their lipid-lowering activity, they have pleiotropic effects that are attributed to the inhibition of regulatory proteins, including Ras-homologous (Rho) GTPases. Here, we discuss the potential usefulness of statins to prevent normal tissue damage provoked by radiotherapy. Statins reduce the mRNA expression of pro-inflammatory and pro-fibrotic cytokines stimulated by ionizing radiation in vitro and alleviate IR-induced inflammation and fibrosis in vivo. The currently available data indicate that statins accelerate the rapid repair of DNA double-strand breaks and, moreover, mitigate the …

research product

Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity

Normal tissue damage limits the efficacy of anticancer therapy. For anthracyclines, the clinically most relevant adverse effect is cardiotoxicity. The mechanisms involved are poorly understood and putative cardioprotectants are controversially discussed. Here, we show that the lipid-lowering drug lovastatin protects rat H9c2 cardiomyoblasts from doxorubicin in vitro. Protection by lovastatin is related to inhibition of the Ras-homologous GTPase Rac1. It rests on a reduced formation of DNA double-strand breaks, resulting from the inhibition of topoisomerase II by doxorubicin. Doxorubicin transport and reactive oxygen species are not involved. Protection by lovastatin was confirmed in vivo. I…

research product

Rac1 protein signaling is required for DNA damage response stimulated by topoisomerase II poisons.

To investigate the potency of the topoisomerase II (topo II) poisons doxorubicin and etoposide to stimulate the DNA damage response (DDR), S139 phosphorylation of histone H2AX (γH2AX) was analyzed using rat cardiomyoblast cells (H9c2). Etoposide caused a dose-dependent increase in the γH2AX level as shown by Western blotting. By contrast, the doxorubicin response was bell-shaped with high doses failing to increase H2AX phosphorylation. Identical results were obtained by immunohistochemical analysis of γH2AX focus formation, comet assay-based DNA strand break analysis, and measuring the formation of the topo II-DNA cleavable complex. At low dose, doxorubicin activated ataxia telangiectasia m…

research product

Designer Thiopurine-analogues for Optimised Immunosuppression in Inflammatory Bowel Diseases.

Background and Aims: The clinical use of azathioprine and 6-mercaptopurine is limited by their delayed onset of action and potential side effects such as myelosuppression and hepatotoxicity. As these drugs specifically target the Vav1/Rac1 signalling pathway in T lamina propria lymphocytes via their metabolite 6-thio-GTP, we studied expression and optimised suppression of this pathway in inflammatory bowel diseases [IBD]. Methods: Rac1 and Vav1 expressions were analysed in mucosal immune cells in IBD patients. Targeted molecular modelling of the 6-thio-GTP molecule was performed to optimise Rac1 blockade; 44 modified designer thiopurine-analogues were tested for apoptosis induction, potenti…

research product

The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity.

Liver is the main detoxifying organ and therefore the target of high concentrations of genotoxic compounds, such as environmental carcinogens and anticancer drugs. Here, we investigated the usefulness of lovastatin, which is nowadays widely used for lipid lowering purpose, as a hepatoprotective drug following the administration of the anthracycline derivative doxorubicin in vivo. To this end, BALB/c mice were exposed to either a single high dose or three consecutive low doses of doxorubicin. Acute and subacute hepatotoxicities were analyzed with or without lovastatin co-treatment. Lovastatin protected the liver against doxorubicin-induced acute pro-inflammatory and pro-fibrotic stress respo…

research product

Chronic heart damage following doxorubicin treatment is alleviated by lovastatin.

The anticancer efficacy of anthracyclines is limited by cumulative dose-dependent early and delayed cardiotoxicity resulting in congestive heart failure. Mechanisms responsible for anthracycline-induced heart damage are controversially discussed and effective preventive measures are preferable. Here, we analyzed the influence of the lipid lowering drug lovastatin on anthracycline-induced late cardiotoxicity three month after treatment of C57BL/6 mice with five low doses of doxorubicin (5×3mg/kg BW; i.p.). Doxorubicin increased the cardiac mRNA levels of BNP, IL-6 and CTGF, while the expression of ANP remained unchanged. Lovastatin counteracted these persisting cardiac stress responses evoke…

research product