Rhodanine-based dyes absorbing in the entire visible spectrum
A series of new broad-absorbing dyes based on rhodanine derivatives conjugated with triarylamines using Q5 a fluorene backbone was synthesized. Spectroscopic and electrochemical characterizations, along with theoretical calculations at the B3LYP/cc-pVDZ level, revealed interesting properties of the dyes, which make the dyes efficiently absorb in the entire visible spectrum.
Hole transporting materials based on benzodithiophene and dithienopyrrole cores for efficient perovskite solar cells
The development of highly efficient hole transporting materials (HTMs) for perovskite solar cells (PSCs) is still one of the most thrilling research subjects in the development of this emerging photovoltaic technology. Inner ring engineering of the aromatic core of new HTMs – consisting of three fused rings endowed with four triarylamine units – reveals major performance effects over the fabricated devices. In particular, substitution of the central pyrrole ring in dithienopyrrole (DTP) by a benzene ring – benzodithiophene (BDT) – allows enhancing the power conversion efficiency from 15.6% to 18.1%, in devices employing mixed-perovskite (FAPbI3)0.85(MAPbBr3)0.15 (MA: CH3NH3+, FA: NHCHNH3+) …
Efficient Benzodithiophene/Benzothiadiazole-Based n-Channel Charge Transporters
A series of donor–acceptor (D-A) small molecules based on electron-deficient benzothiadiazole (BTD) and electron-rich benzodithiophene (BDT) featuring an A-D-A structure is presented. Exhaustive spectroscopic, electrochemical, and computational studies evidence their electroactive nature and their ability to form well-ordered thin films with broad visible absorptions and low band gaps (ca. 2 eV). Time-resolved microwave conductivity (TRMC) studies unveil unexpected n-type charge transport displaying high electron mobilities around 0.1 cm2 V−1 s−1. Efficient electron transport properties are consistent with the low electron reorganization energies (0.11–0.17 eV) theoretically predicted.
Hole-Transporting Materials for Perovskite Solar Cells Employing an Anthradithiophene Core
A decade after the report of the first efficient perovskite-based solar cell, development of novel hole-transporting materials (HTMs) is still one of the main topics in this research field. Two of the main advance vectors of this topic lie in obtaining materials with enhanced hole-extracting capability and in easing their synthetic cost. The use of anthra[1,9-bc:5,10-b'c']dithiophene (ADT) as a flat π-conjugated frame for bearing arylamine electroactive moieties allows obtaining two novel highly efficient HTMs from very cheap precursors. The solar cells fabricated making use of the mixed composition (FAPbI3)0.85(MAPbBr3)0.15 perovskite and the novel ADT-based HTMs show power conversion effi…
Minimizing geminate recombination losses in small-molecule-based organic solar cells
Small-molecule-based organic solar cells (OSCs) are a recurrent alternative to polymer-based OSCs. Due to the higher purity and definition of small molecules compared to polymers, the morphological requirements can be more relaxed. Here, we present a series of novel rhodanine-based small-molecule electron donors and blend them with the standard acceptor PC70BM. By performing a target analysis on femtosecond spectroscopy data, we quantify the rates of geminate charge recombination. We are able to reproduce these rates by applying the Marcus–Levich–Jortner equation, using results from quantum chemical calculations. This shows that in a series of differently substituted compounds, one can corr…