0000000000326614

AUTHOR

Rafael Sandoval-torrientes

0000-0002-5529-8233

showing 5 related works from this author

Rhodanine-based dyes absorbing in the entire visible spectrum

2017

A series of new broad-absorbing dyes based on rhodanine derivatives conjugated with triarylamines using Q5 a fluorene backbone was synthesized. Spectroscopic and electrochemical characterizations, along with theoretical calculations at the B3LYP/cc-pVDZ level, revealed interesting properties of the dyes, which make the dyes efficiently absorb in the entire visible spectrum.

ChemistryOrganic ChemistryQuímica orgánica02 engineering and technologyConjugated systemFluorene010402 general chemistry021001 nanoscience & nanotechnologyElectrochemistryPhotochemistry01 natural sciences3. Good health0104 chemical scienceschemistry.chemical_compoundRhodanineDensity functional theory0210 nano-technologyVisible spectrumOrganic Chemistry Frontiers
researchProduct

Hole transporting materials based on benzodithiophene and dithienopyrrole cores for efficient perovskite solar cells

2018

The development of highly efficient hole transporting materials (HTMs) for perovskite solar cells (PSCs) is still one of the most thrilling research subjects in the development of this emerging photovoltaic technology. Inner ring engineering of the aromatic core of new HTMs – consisting of three fused rings endowed with four triarylamine units – reveals major performance effects over the fabricated devices. In particular, substitution of the central pyrrole ring in dithienopyrrole (DTP) by a benzene ring – benzodithiophene (BDT) – allows enhancing the power conversion efficiency from 15.6% to 18.1%, in devices employing mixed-perovskite (FAPbI3)0.85(MAPbBr3)0.15 (MA: CH3NH3+, FA: NHCHNH3+) …

PhotoluminescenceMaterials scienceRenewable Energy Sustainability and the Environmentbusiness.industryPhotovoltaic systemEnergy conversion efficiency02 engineering and technologyGeneral ChemistryConductivity010402 general chemistry021001 nanoscience & nanotechnologyRing (chemistry)01 natural sciences7. Clean energy0104 chemical sciencesActive layerOptoelectronicsGeneral Materials ScienceDensity functional theory0210 nano-technologybusinessPerovskite (structure)
researchProduct

Efficient Benzodithiophene/Benzothiadiazole-Based n-Channel Charge Transporters

2017

A series of donor–acceptor (D-A) small molecules based on electron-deficient benzothiadiazole (BTD) and electron-rich benzodithiophene (BDT) featuring an A-D-A structure is presented. Exhaustive spectroscopic, electrochemical, and computational studies evidence their electroactive nature and their ability to form well-ordered thin films with broad visible absorptions and low band gaps (ca. 2 eV). Time-resolved microwave conductivity (TRMC) studies unveil unexpected n-type charge transport displaying high electron mobilities around 0.1 cm2 V−1 s−1. Efficient electron transport properties are consistent with the low electron reorganization energies (0.11–0.17 eV) theoretically predicted.

Band gapChemistryQuímica orgánicaCharge (physics)02 engineering and technologyGeneral ChemistryElectron010402 general chemistry021001 nanoscience & nanotechnologyElectrochemistry01 natural sciencesElectron transport chainSmall molecule0104 chemical sciencesChemical physicsComputational chemistryN channelThin film0210 nano-technology
researchProduct

Hole-Transporting Materials for Perovskite Solar Cells Employing an Anthradithiophene Core

2021

A decade after the report of the first efficient perovskite-based solar cell, development of novel hole-transporting materials (HTMs) is still one of the main topics in this research field. Two of the main advance vectors of this topic lie in obtaining materials with enhanced hole-extracting capability and in easing their synthetic cost. The use of anthra[1,9-bc:5,10-b'c']dithiophene (ADT) as a flat π-conjugated frame for bearing arylamine electroactive moieties allows obtaining two novel highly efficient HTMs from very cheap precursors. The solar cells fabricated making use of the mixed composition (FAPbI3)0.85(MAPbBr3)0.15 perovskite and the novel ADT-based HTMs show power conversion effi…

Materials scienceHigh conductivitybusiness.industry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical scienceslaw.inventionCore (optical fiber)lawSolar cellMoleculeOptoelectronicsGeneral Materials ScienceDensity functional theory0210 nano-technologybusinessPerovskite (structure)
researchProduct

Minimizing geminate recombination losses in small-molecule-based organic solar cells

2019

Small-molecule-based organic solar cells (OSCs) are a recurrent alternative to polymer-based OSCs. Due to the higher purity and definition of small molecules compared to polymers, the morphological requirements can be more relaxed. Here, we present a series of novel rhodanine-based small-molecule electron donors and blend them with the standard acceptor PC70BM. By performing a target analysis on femtosecond spectroscopy data, we quantify the rates of geminate charge recombination. We are able to reproduce these rates by applying the Marcus–Levich–Jortner equation, using results from quantum chemical calculations. This shows that in a series of differently substituted compounds, one can corr…

chemistry.chemical_classificationMaterials scienceOrganic solar cellPhotovoltaic systemQuímica orgánicafood and beverages02 engineering and technologyGeneral ChemistryPolymerElectron010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciencesSmall moleculeAcceptor0104 chemical scienceschemistryChemical physicsMaterials ChemistryCyclic voltammetry0210 nano-technologyFemtochemistryJournal of Materials Chemistry C
researchProduct