0000000000328340

AUTHOR

Victor Nistor

showing 7 related works from this author

Algebras of pseudodifferential operators on complete manifolds

2003

In several influential works, Melrose has studied examples of non-compact manifolds M 0 M_0 whose large scale geometry is described by a Lie algebra of vector fields V ⊂ Γ ( M ; T M ) \mathcal V \subset \Gamma (M;TM) on a compactification of M 0 M_0 to a manifold with corners M M . The geometry of these manifolds—called “manifolds with a Lie structure at infinity”—was studied from an axiomatic point of view in a previous paper of ours. In this paper, we define and study an algebra Ψ 1 , 0 , V ∞ ( M 0 ) \Psi _{1,0,\mathcal V}^\infty (M_0) of pseudodifferential operators canonically associated to a manifold M 0 M_0 with a Lie structure at infinity V ⊂ Γ ( M ; T M ) \mathcal V \subset \Gamma (…

Filtered algebraCombinatoricsGeneral MathematicsAlgebra representationCurrent algebraUniversal enveloping algebraAffine Lie algebraPoisson algebraLie conformal algebraMathematicsGraded Lie algebraElectronic Research Announcements of the American Mathematical Society
researchProduct

Invariance spectrale des algèbres d'opérateurs pseudodifférentiels

2002

We construct and study several algebras of pseudodifferential operators that are closed under holomorphic functional calculus. This leads to a better understanding of the structure of inverses of elliptic pseudodifferential operators on certain non-compact manifolds. It also leads to decay properties for the solutions of these operators. To cite this article: R. Lauter et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002) 1095–1099.

AlgebraOperator algebraBanach algebraFredholm operatorHolomorphic functional calculusHolomorphic functionGeneral MedicineOperator theoryFréchet algebraDifferential operatorMathematicsComptes Rendus Mathematique
researchProduct

SPECTRAL INVARIANCE FOR CERTAIN ALGEBRAS OF PSEUDODIFFERENTIAL OPERATORS

2001

We construct algebras of pseudodifferential operators on a continuous family groupoid G that are closed under holomorphic functional calculus, contain the algebra of all pseudodifferential operators of order 0 on G as a dense subalgebra, and reflect the smooth structure of the groupoid G, when G is smooth. As an application, we get a better understanding on the structure of inverses of elliptic pseudodifferential operators on classes of non-compact manifolds. For the construction of these algebras closed under holomorphic functional calculus, we develop three methods: one using two-sided semi-ideals, one using commutators, and one based on Schwartz spaces on the groupoid.

Mathematics::Operator AlgebrasPseudodifferential operatorsGeneral Mathematics010102 general mathematicsMathematics - Operator Algebras01 natural sciencesMathematics - Spectral TheoryAlgebraMathematics Subject ClassificationOperator algebraMathematics::K-Theory and Homology0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsOperator Algebras (math.OA)Construct (philosophy)Spectral Theory (math.SP)Mathematics::Symplectic GeometryMathematicsJournal of the Institute of Mathematics of Jussieu
researchProduct

Analysis of geometric operators on open manifolds: A groupoid approach

2001

The first five sections of this paper are a survey of algebras of pseudodifferential operators on groupoids. We thus review differentiable groupoids, the definition of pseudodifferential operators on groupoids, and some of their properties. We use then this background material to establish a few new results on these algebras, results that are useful for the analysis of geometric operators on non-compact manifolds and singular spaces. The first step is to establish that the geometric operators on groupoids are in our algebras. This then leads to criteria for the Fredholmness of geometric operators on suitable non-compact manifolds, as well as to an inductive procedure to study their essentia…

Pure mathematicsSpectral theoryMathematics::Operator Algebras010102 general mathematicsMathematical analysisSpectral geometryFinite-rank operatorOperator theoryCompact operator01 natural sciencesQuasinormal operatorSemi-elliptic operatorElliptic operatorMathematics::K-Theory and Homology0103 physical sciences010307 mathematical physics0101 mathematicsMathematics::Symplectic GeometryMathematics
researchProduct

On spectra of geometric operators on open manifolds and differentiable groupoids

2001

We use a pseudodifferential calculus on differentiable groupoids to obtain new analytical results on geometric operators on certain noncompact Riemannian manifolds. The first step is to establish that the geometric operators belong to a pseudodifferential calculus on an associated differentiable groupoid. This then leads to Fredholmness criteria for geometric operators on suitable noncompact manifolds, as well as to an inductive procedure to compute their essential spectra. As an application, we answer a question of Melrose on the essential spectrum of the Laplace operator on manifolds with multicylindrical ends.

Discrete mathematicsPure mathematicsHigher-dimensional algebraMathematics::Operator AlgebrasGeneral MathematicsEssential spectrumMathematics::Spectral TheoryOperator theoryCompact operatorQuasinormal operatorMathematics::K-Theory and HomologyDouble groupoidMathematics::Differential GeometryDifferentiable functionMathematics::Symplectic GeometryLaplace operatorMathematicsElectronic Research Announcements of the American Mathematical Society
researchProduct

Complex powers and non-compact manifolds

2002

We study the complex powers $A^{z}$ of an elliptic, strictly positive pseudodifferential operator $A$ using an axiomatic method that combines the approaches of Guillemin and Seeley. In particular, we introduce a class of algebras, ``extended Weyl algebras,'' whose definition was inspired by Guillemin's paper on the subject. An extended Weyl algebra can be thought of as an algebra of ``abstract pseudodifferential operators.'' Many algebras of pseudodifferential operators are extended Weyl algebras. Several results typical for algebras of pseudodifferential operators (asymptotic completeness, construction of Sobolev spaces, boundedness between apropriate Sobolev spaces, >...) generalize to…

Class (set theory)Applied Mathematicsmedia_common.quotation_subjectMathematics - Operator AlgebrasAxiomatic systemMathematics::Spectral TheoryInfinityManifoldAlgebraSobolev spaceMathematics - Spectral TheoryOperator (computer programming)Mathematics - Analysis of PDEsCompleteness (order theory)FOS: MathematicsOperator Algebras (math.OA)Spectral Theory (math.SP)Mathematics::Symplectic GeometryAnalysisEigenvalues and eigenvectorsAnalysis of PDEs (math.AP)media_commonMathematics
researchProduct

Pseudodifferential operators on manifolds with a Lie structure at infinity

2003

to appear in Anal. Math.; Several examples of non-compact manifolds $M_0$ whose geometry at infinity is described by Lie algebras of vector fields $V \subset \Gamma(TM)$ (on a compactification of $M_0$ to a manifold with corners $M$) were studied by Melrose and his collaborators. In math.DG/0201202 and math.OA/0211305, the geometry of manifolds described by Lie algebras of vector fields -- baptised "manifolds with a Lie structure at infinity" there -- was studied from an axiomatic point of view. In this paper, we define and study the algebra $\Psi_{1,0,\VV}^\infty(M_0)$, which is an algebra of pseudodifferential operators canonically associated to a manifold $M_0$ with the Lie structure at …

Mathematics - Differential GeometryPure mathematicsVector algebraRiemannian geometry01 natural sciencessymbols.namesakeMathematics (miscellaneous)Mathematics - Analysis of PDEs0103 physical sciencesLie algebraFOS: MathematicsCompactification (mathematics)0101 mathematicsMathematics010102 general mathematicsHigh Energy Physics::PhenomenologyRiemannian manifoldDifferential operatorCompact operatorAlgebraOperator algebraDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbols010307 mathematical physicsStatistics Probability and Uncertainty[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]Analysis of PDEs (math.AP)
researchProduct