0000000000329740

AUTHOR

M. Paternostro

showing 3 related works from this author

Superadiabatic dynamics in open quantum systems

2013

We extend the concept of superadiabatic dynamics, or transitionless quantum driving, to quantum open systems whose evolution is governed by a master equation in the Lindblad form. We provide the general framework needed to determine the control strategy required to achieve superadiabaticity. We apply our formalism to two examples consisting of a two-level system coupled to environments with time-dependent bath operators.

Quantum PhysicsFOS: Physical sciencesQuantum Physics (quant-ph)
researchProduct

Potential and limitations of quantum extreme learning machines

2023

Quantum reservoir computers (QRC) and quantum extreme learning machines (QELM) aim to efficiently post-process the outcome of fixed -- generally uncalibrated -- quantum devices to solve tasks such as the estimation of the properties of quantum states. The characterisation of their potential and limitations, which is currently lacking, will enable the full deployment of such approaches to problems of system identification, device performance optimization, and state or process reconstruction. We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements, and provide an explicit characterisation of the information exactly retriev…

Quantum PhysicsFOS: Physical sciencesquantum machine learningGeneral Physics and Astronomyquantum extreme learningQuantum Physics (quant-ph)quantum reservoir computingSettore FIS/03 - Fisica Della Materia
researchProduct

Geometric phase kickback in a mesoscopic qubit-oscillator system

2011

We illustrate a reverse Von Neumann measurement scheme in which a geometric phase induced on a quantum harmonic oscillator is measured using a microscopic qubit as a probe. We show how such a phase, generated by a cyclic evolution in the phase space of the harmonic oscillator, can be kicked back on the qubit, which plays the role of a quantum interferometer. We also extend our study to finite-temperature dissipative Markovian dynamics and discuss potential implementations in micro and nano-mechanical devices coupled to an effective two-level system.

Quantum PhysicsStatistical Mechanics (cond-mat.stat-mech)FOS: Physical sciencesQuantum Physics (quant-ph)Condensed Matter - Statistical Mechanics
researchProduct