0000000000330150

AUTHOR

Clarisse Baumann

showing 12 related works from this author

Ten new cases further delineate the syndromic intellectual disability phenotype caused by mutations in DYRK1A.

2015

The dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) gene, located on chromosome 21q22.13 within the Down syndrome critical region, has been implicated in syndromic intellectual disability associated with Down syndrome and autism. DYRK1A has a critical role in brain growth and development primarily by regulating cell proliferation, neurogenesis, neuronal plasticity and survival. Several patients have been reported with chromosome 21 aberrations such as partial monosomy, involving multiple genes including DYRK1A. In addition, seven other individuals have been described with chromosomal rearrangements, intragenic deletions or truncating mutations that disrupt specificall…

AdultMaleMicrocephalyMonosomyDown syndromeAdolescentChromosomes Human Pair 21BiologyProtein Serine-Threonine KinasesArticleIntellectual DisabilityIntellectual disabilityGeneticsmedicineHumansAutistic DisorderChildGenetics (clinical)Chromosomal DeletionGeneticsProtein-Tyrosine Kinasesmedicine.diseasePhenotypeChild PreschoolSpeech delayMutationMicrocephalyAutismFemalemedicine.symptomChromosome DeletionDown SyndromeChromosome 21European journal of human genetics : EJHG
researchProduct

Diagnostic strategy in segmentation defect of the vertebrae: a retrospective study of 73 patients

2018

BackgroundSegmentation defects of the vertebrae (SDV) are non-specific features found in various syndromes. The molecular bases of SDV are not fully elucidated due to the wide range of phenotypes and classification issues. The genes involved are in the Notch signalling pathway, which is a key system in somitogenesis. Here we report on mutations identified in a diagnosis cohort of SDV. We focused on spondylocostal dysostosis (SCD) and the phenotype of these patients in order to establish a diagnostic strategy when confronted with SDV.Patients and methodsWe used DNA samples from a cohort of 73 patients and performed targeted sequencing of the five known SCD-causing genes (DLL3,MESP2,LFNG,HES7…

Male0301 basic medicineOncologymedicine.medical_specialtyCandidate geneAdolescent030105 genetics & heredityspondylocostal dysostosisdiagnostic strategysegmentation defect of the vertebraewhole exome sequencingLFNG03 medical and health sciencesgene panelInternal medicineExome SequencingBasic Helix-Loop-Helix Transcription FactorsGeneticsmedicineHumansFLNBChildGenetics (clinical)Exome sequencingBone Diseases Developmentalbusiness.industryIntracellular Signaling Peptides and ProteinsGlycosyltransferasesInfantMembrane ProteinsRetrospective cohort studymedicine.diseasePhenotypeSpineSpondylocostal dysostosisPedigreePhenotype[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsChild PreschoolMutationCohortFemaleT-Box Domain Proteinsbusiness
researchProduct

Molecular, clinical and neuropsychological study in 31 patients with Kabuki syndrome and KMT2D mutations

2017

IF 3.326; International audience; Kabuki syndrome (KS-OMIM 147920) is a rare developmental disease characterized by the association of multiple congenital anomalies and intellectual disability. This study aimed to investigate intellectual performance in children with KS and link the performance to several clinical features and molecular data. We recruited 31 children with KMT2D mutations who were 6 to 16 years old. They all completed the Weschler Intelligence Scale for Children, fourth edition. We calculated all indexes: the Full Scale Intellectual Quotient (FSIQ), Verbal Comprehension Index (VCI), Perceptive Reasoning Index (PRI), Processing Speed Index (PSI), and Working Memory Index (WMI…

0301 basic medicineMaleAdolescentVisual impairmentDNA Mutational AnalysisIntelligenceneuropsychologyDisease[SDV.GEN] Life Sciences [q-bio]/GeneticsNeuropsychological Testsgenotype-phenotype correlation03 medical and health sciencesIntensive careIntellectual disabilityGene OrderGeneticsmedicineHumansAbnormalities MultipleChildKMT2D mutationGenetics (clinical)AllelesGenetic Association Studies[SDV.GEN]Life Sciences [q-bio]/GeneticsKabuki syndromebusiness.industryWorking memoryNeuropsychologyWechsler Adult Intelligence Scalemedicine.diseaseHematologic Diseases3. Good healthNeoplasm ProteinsDNA-Binding Proteins030104 developmental biologyPhenotypeVestibular DiseasesGenetic LociFaceMutationFemalemedicine.symptombusinessKabuki syndromeClinical psychology
researchProduct

In-Frame Mutations in Exon 1 of SKI Cause Dominant Shprintzen-Goldberg Syndrome

2012

International audience; Shprintzen-Goldberg syndrome (SGS) is characterized by severe marfanoid habitus, intellectual disability, camptodactyly, typical facial dysmorphism, and craniosynostosis. Using family-based exome sequencing, we identified a dominantly inherited heterozygous in-frame deletion in exon 1 of SKI. Direct sequencing of SKI further identified one overlapping heterozygous in-frame deletion and ten heterozygous missense mutations affecting recurrent residues in 18 of the 19 individuals screened for SGS; these individuals included one family affected by somatic mosaicism. All mutations were located in a restricted area of exon 1, within the R-SMAD binding domain of SKI. No mut…

MaleModels Molecularmedicine.disease_cause[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMarfan SyndromeArachnodactylyExon0302 clinical medicineGene OrderMissense mutationGenetics(clinical)Child[ SDV.GEN.GH ] Life Sciences [q-bio]/Genetics/Human geneticsGenetics (clinical)Exome sequencingGenes DominantGenetics0303 health sciencesMutationShprintzen–Goldberg syndromeExonsPhenotypePedigreeDNA-Binding ProteinsPhenotypeChild PreschoolFemalemedicine.symptomAdultAdolescentMolecular Sequence Data[ SDV.BBM.BM ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyBiology[SDV.GEN.GH] Life Sciences [q-bio]/Genetics/Human genetics03 medical and health sciencesCamptodactylyCraniosynostosesYoung Adultstomatognathic systemReportProto-Oncogene ProteinsmedicineGeneticsHumansAmino Acid Sequence030304 developmental biologyFacies[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologymedicine.diseaseMolecular biologyProtein Structure TertiaryArachnodactyly[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsMutationSequence Alignmenthuman activities030217 neurology & neurosurgery
researchProduct

GLI3 is rarely implicated in OFD syndromes with midline abnormalities

2011

A range of phenotypes including Greig cephalopolysyndactyly and Pallister-Hall syndromes (GCPS, PHS) are caused by pathogenic mutation of the GLI3 gene. To characterize the clinical variability of GLI3 mutations, we present a subset of a cohort of 174 probands referred for GLI3 analysis. Eighty-one probands with typical GCPS or PHS were previously reported, and we report the remaining ninety-three probands here. This includes nineteen probands (twelve mutations) who fulfilled clinical criteria for GCPS or PHS, forty-eight probands (sixteen mutations) with features of GCPS or PHS but who did not meet the clinical criteria (sub-GCPS and sub-PHS), twenty-one probands (six mutations) with featu…

congenital hereditary and neonatal diseases and abnormalitiesPallister-Hall SyndromeKruppel-Like Transcription FactorsNerve Tissue ProteinsBiologyBioinformaticsArticlePolydactylyMutationGLI3Mutation (genetic algorithm)GeneticsHumansAbnormalities MultipleSyndactylyGenetics (clinical)Human Mutation
researchProduct

Split hand/foot malformation with long-bone deficiency andBHLHA9duplication: report of 13 new families

2013

Split hand/foot malformation (SHFM) with long-bone deficiency (SHFLD, MIM#119100) is a rare condition characterized by SHFM associated with long-bone malformation usually involving the tibia. Previous published data reported several unrelated patients with 17p13.3 duplication and SHFLD. Recently, the minimal critical region had been reduced, suggesting that BHLHA9 copy number gains are associated with this limb defect. Here, we report on 13 new families presenting with ectrodactyly and harboring a BHLHA9 duplication.

Ectrodactylybusiness.industryFoot malformationLong boneAnatomymedicine.diseaseSplit-Hand/Foot Malformationmedicine.anatomical_structureGene duplicationGeneticsmedicineTibiabusinessGenetics (clinical)Clinical Genetics
researchProduct

ALDH1A3 Mutations Cause Recessive Anophthalmia and Microphthalmia

2013

Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the…

MaleGenetic LinkageRetinoic acidGenes RecessiveBiologymedicine.disease_causeMicrophthalmiachemistry.chemical_compoundsymbols.namesakeChromosome SegregationReportmedicineGeneticsFood and NutritionHumansMicrophthalmosMissense mutationGenetics(clinical)Genetics (clinical)Exome sequencingSanger sequencingGeneticsMutationAnophthalmiaHomozygoteAnophthalmosExonsSequence Analysis DNAAldehyde DehydrogenaseDisease gene identificationmedicine.diseaseAldehyde OxidoreductasesMolecular biologyIntronseye diseasesPedigreeHEK293 CellschemistryAlimentation et NutritionMutationsymbolsFemaleMutant Proteinssense organsThe American Journal of Human Genetics
researchProduct

Large national series of patients with Xq28 duplication involving MECP2: Delineation of brain MRI abnormalities in 30 affected patients.

2016

International audience; Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such …

0301 basic medicineMalePathologyMethyl-CpG-Binding Protein 2[SDV]Life Sciences [q-bio]030105 genetics & heredityCorpus callosumLateral ventricles0302 clinical medicineGene DuplicationIKBKGFLNAChildGenetics (clinical)GeneticsBrain Diseasesmedicine.diagnostic_testMiddle AgedPrognosisMagnetic Resonance ImagingHypotonia3. Good healthPedigree[SDV] Life Sciences [q-bio]medicine.anatomical_structurePhenotypeXq28 duplicationChild PreschoolFemalemedicine.symptomAdultmedicine.medical_specialtycongenital hereditary and neonatal diseases and abnormalitiesAdolescentGenotypeBiologygenotype-phenotype correlationWhite matter03 medical and health sciencesYoung AdultGeneticsmedicineHumansGenetic Association StudiesChromosomes Human X[ SDV ] Life Sciences [q-bio]Infant NewbornInfantMagnetic resonance imagingHyperintensitynervous system diseasesMental Retardation X-LinkedMECP2 gene030217 neurology & neurosurgeryAmerican journal of medical genetics. Part A
researchProduct

Clinical and molecular spectrum of renal malformations in Kabuki syndrome.

2013

International audience; OBJECTIVE: To determine the frequency and types of renal malformations, and to evaluate renal function in a cohort of patients with Kabuki syndrome (KS). STUDY DESIGN: Renal ultrasound scans and plasma creatinine measurements were collected from a French cohort of 94 patients with genotyped KS. Renal function was evaluated based on the estimated glomerular filtration rate. A genotype-phenotype study was conducted for renal and urinary tract malformations. RESULTS: Renal malformations were present in 22% of cases, and urinary tract anomalies were present in 15%. Renal malformations were observed in 28% of the MLL2 mutation-positive group and in 0% of the MLL2 mutation…

MalePathologyGenotyping Techniquesurologic and male genital diseasesKidneyCohort Studieschemistry.chemical_compoundChildUltrasonographyHistone Demethylases0303 health sciencesKidney030305 genetics & heredityNuclear ProteinsHypoplasia3. Good healthNeoplasm ProteinsDNA-Binding Proteinsmedicine.anatomical_structureVestibular DiseasesChild PreschoolCreatinineBiological MarkersFemaleFranceAbnormalitiesMultipleCohort studyGlomerular Filtration RateAdultGenetic Markersmedicine.medical_specialtyAdolescentUrinary systemUrologyRenal function03 medical and health sciencesYoung AdultmedicineHumansAbnormalities MultiplePreschoolGenetic Association Studies030304 developmental biologyRetrospective StudiesCreatinine[SDV.GEN]Life Sciences [q-bio]/Geneticsbusiness.industryInfantRetrospective cohort studymedicine.diseaseHematologic DiseaseschemistryFacePediatrics Perinatology and Child Healthbusiness[ SDV.GEN ] Life Sciences [q-bio]/GeneticsKabuki syndromeBiomarkersThe Journal of pediatrics
researchProduct

Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis

2012

Autosomal recessive renal tubular dysgenesis (RTD) is a severe disorder of renal tubular development characterized by early onset and persistent fetal anuria leading to oligohydramnios and the Potter sequence, associated with skull ossification defects. Early death occurs in most cases from anuria, pulmonary hypoplasia, and refractory arterial hypotension. The disease is linked to mutations in the genes encoding several components of the renin-angiotensin system (RAS): AGT (angiotensinogen), REN (renin), ACE (angiotensin-converting enzyme), and AGTR1 (angiotensin II receptor type 1). Here, we review the series of 54 distinct mutations identified in 48 unrelated families. Most of them are no…

medicine.medical_specialty2716 Genetics (clinical)10039 Institute of Medical GeneticsAngiotensinogen030232 urology & nephrologyGenes RecessivePrenatal diagnosis610 Medicine & healthPeptidyl-Dipeptidase ABiologymedicine.disease_causeReceptor Angiotensin Type 1Kidney Tubules ProximalRenin-Angiotensin System03 medical and health sciences0302 clinical medicine1311 GeneticsInternal medicineReninRenin–angiotensin systemGeneticsmedicineAnimalsHumansGenetic Association StudiesGenetics (clinical)030304 developmental biology0303 health sciencesKidneyMutationAngiotensin II receptor type 1medicine.disease3. Good healthDisease Models Animalmedicine.anatomical_structureEndocrinologyUrogenital AbnormalitiesRenal blood flowMutation570 Life sciences; biologyAnuriamedicine.symptomPotter sequence
researchProduct

Incomplete penetrance and phenotypic variability of 6q16 deletions including SIM1.

2015

International audience; 6q16 deletions have been described in patients with a Prader-Willi-like (PWS-like) phenotype. Recent studies have shown that certain rare single-minded 1 (SIM1) loss-of-function variants were associated with a high intra-familial risk for obesity with or without features of PWS-like syndrome. Although SIM1 seems to have a key role in the phenotype of patients carrying 6q16 deletions, some data support a contribution of other genes, such as GRIK2, to explain associated behavioural problems. We describe 15 new patients in whom de novo 6q16 deletions were characterised by comparative genomic hybridisation or single-nucleotide polymorphism (SNP) array analysis, including…

AdultMaleAdolescent[SDV]Life Sciences [q-bio]PenetranceBioinformaticsPolymorphism Single NucleotideArticlePregnancyGRIK2Basic Helix-Loop-Helix Transcription FactorsGeneticsHumansSNPObesityChildGeneGenetic Association StudiesGenetics (clinical)GeneticsComparative Genomic Hybridizationbiology[ SDV ] Life Sciences [q-bio]InfantPenetrancePhenotypeRepressor ProteinsChild PreschoolAborted FetusSIM1biology.proteinChromosomes Human Pair 6FemaleHaploinsufficiencyPrader-Willi SyndromeComparative genomic hybridization
researchProduct

Fifteen years of research on oral-facial-digital syndromes: from 1 to 16 causal genes

2017

Oral–facial–digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in theOFD1gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and …

Male0301 basic medicineHeterozygoteciliopathieOral facial digital[SDV]Life Sciences [q-bio][ SDV.BBM.BM ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyBiologyCiliopathiesCentriole elongation03 medical and health sciencesIntraflagellar transportGenotypeGeneticsPolycystic kidney diseasemedicineHumansAbnormalities Multiple[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyFunctional studies[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyGene*oral-facial-digital syndromesGenetics (clinical)ComputingMilieux_MISCELLANEOUSEncephaloceleGeneticsPolycystic Kidney Diseases[ SDV ] Life Sciences [q-bio]*ciliopathiesProteinsMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6][SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyOrofaciodigital Syndromesmedicine.disease030104 developmental biologyFaceMutationciliopathiesoral-facial-digital syndromesFemaleRetinitis PigmentosaRare cancers Radboud Institute for Health Sciences [Radboudumc 9]Ciliary Motility Disorders
researchProduct