0000000000330786

AUTHOR

S Guillot

showing 2 related works from this author

On the peculiar long-term orbital evolution of the eclipsing accreting millisecond X-ray pulsar SWIFT J1749.4-2807

2022

We present the pulsar timing analysis of the accreting millisecond X-ray pulsar SWIFT J1749.4-2807 monitored by NICER and XMM-Newton during its latest outburst after almost eleven years of quiescence. From the coherent timing analysis of the pulse profiles, we updated the orbital ephemerides of the system. Large phase jumps of the fundamental frequency phase of the signal are visible during the outburst, consistent with what was observed during the previous outburst. Moreover, we report on the marginally significant evidence for non-zero eccentricity ($e\simeq 4\times 10^{-5}$) obtained independently from the analysis of both the 2021 and 2010 outbursts and we discuss possible compatible sc…

High Energy Astrophysical Phenomena (astro-ph.HE)Accretiongeneral [Binaries]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesneutron [Stars]Astronomy and Astrophysicsstars: neutronX-rays: binariesSettore FIS/05 - Astronomia E Astrofisicabinaries: generalSpace and Planetary Scienceaccretion accretion discsbinaries [X-rays][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Accretion discs
researchProduct

Outflows and spectral evolution in the eclipsing AMXP SWIFT J1749.4–2807 with NICER, XMM-Newton, and NuSTAR

2022

The neutron star low-mass X-ray binary SWIFT J1749.4–2807 is the only known eclipsing accreting millisecond X-ray pulsar. In this manuscript, we perform a spectral characterization of the system throughout its 2021, 2-week-long outburst, analysing 11 NICER observations and quasi-simultaneous XMM-Newton and NuSTAR single observations at the outburst peak. The broad-band spectrum is well-modelled with a blackbody component with a temperature of ∼0.6 keV, most likely consistent with a hotspot on the neutron star surface, and a Comptonization spectrum with power-law index Γ ∼ 1.9, arising from a hot corona at ∼12 keV. No direct emission from the disc was found, possibly due to it being too cool…

High Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsX-rays: individuals: Swift J1749.4-2807accretion discsStars: neutronX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaaccretionAccretion accretion discs[SDU]Sciences of the Universe [physics]Space and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaMonthly Notices of the Royal Astronomical Society
researchProduct