0000000000331963
AUTHOR
D. Gryaznov
Confinement effects for ionic carriers in SrTiO3 ultrathin films: first-principles calculations of oxygen vacancies.
One-dimensional confinement effects are modelled within the hybrid HF-DFT LCAO approach considering neutral and single-charged oxygen vacancies in SrTiO(3) ultrathin films. The calculations reveal that confinement effects are surprisingly short-range in this partly covalent perovskite; already for film thickness of 2-3 nm (and we believe, similar size nanoparticles) only the surface-plane defect properties differ from those in the bulk. This includes a pronounced decrease of the defect formation energy (by ∼1 eV), a much deeper defect band level and a noticeable change in the electronic density redistribution at the near-surface vacancy site with respect to that in the bulk. The results als…
Finite element simulation of diffusion into polycrystalline materials
Diffusion in polycrystalline materials is investigated by means of numerical finite element simulations for constant source conditions. The grain boundaries are assumed to provide fast diffusion paths. Main emphasis is put on situations that typically occur for nanocrystals, viz. on situations in which (i) the diffusion length is significant compared with grain size, (ii) the influence of boundaries that are parallel to the surface become important in addition to the perpendicular ones. Furthermore, we treat the influence of blocking space charge layers sandwiching the core pathways and thus channeling grain boundary diffusion.
A Comparative Ab Initio Thermodynamic Study of Oxygen Vacancies in ZnO and SrTiO3: Emphasis on Phonon Contribution
Using a hybrid Hartree–Fock (HF)-DFT method combined with LCAO basis set and periodic supercell approach, the atomic, electronic structure and phonon properties of oxygen vacancies in ZnO and SrTiO3 were calculated and compared. The important role of a ghost basis function centered at the vacant site and defect spin state for SrTiO3 is discussed. It is shown that the use of hybrid functionals is vital for correct reproduction of defects basic properties. The Gibbs free energy of formation of oxygen vacancies and their considerable temperature dependence has been compared for the two oxides. These calculations were based on the polarizability model for the soft mode temperature behavior in S…
Jahn-Teller effect in the phonon properties of defective SrTiO3from first principles
the Jahn–Teller effect occurs, thus reducing the cubic symmetry of a perfect crystal and leading to the appearance of both Raman- and infrared-active vibrational modes. The calculated phonon densities of states and group-theoretical analysis of defect-induced phonon frequencies were used for the interpretation of the relevant experimental data, once defect-induced local modes are identified. The temperature dependence of the Vo formation energy based on the calculated Gibbs free energy was also compared with experiments, and the phonon contribution therein estimated.
Helium Behavior in Oxide Nuclear Fuels: First Principles Modeling
UO2 and (U,Pu)O2 solid solutions (the so-called MOX) nowadays are used as commercial nuclear fuels in many countries. One of the safety issues during the storage of these fuels is related to their self-irradiation that produces and accumulates point defects and helium therein. We present density functional theory (DFT) calculations for UO2, PuO2 and MOX containing He atoms in octahedral interstitial positions. In particular, we calculated basic MOX properties and He incorporation energies as functions of Pu concentration within the spin-polarized, generalized gradient approximation (GGA) DFT calculations. We also included the on-site electron correlation corrections using the Hubbard model …
Ab initio modeling of oxygen impurity atom incorporation into uranium mononitride surface and subsurface vacancies
The incorporation of oxygen atoms has been simulated into either nitrogen or uranium vacancy at the UN(001) surface, sub-surface or central layers. For calculations on the corresponding slab models both the relativistic pseudopotentials and the method of projector augmented-waves (PAW) as implemented in the VASP computer code have been used. The energies of O atom incorporation and solution within the defective UN surface have been calculated and discussed. For different configurations of oxygen ions at vacancies within the UN(001) slab, the calculated density of states and electronic charge re-distribution was analyzed. Considerable energetic preference of O atom incorporation into the N-v…
Ab initio study of phase competition in (La1−c,Src)CoO3 solid solutions
Abstract (La 1 − c ,Sr c )CoO 3 (LSC) solid solutions are promising materials for high temperature electrochemical cells and cathodes of solid oxide fuel cells. The Density Functional Theory (DFT) was applied to calculate the energies of the different superstructures in LSC which are stable with respect to formation of anti-phase domains. The energy parameters determining the relative stability of the cubic superstructures (phases) are extracted from these calculations. Using the Concentration Wave formalism and the energy parameters for different phases from DFT calculations, the temperature dependences of the long-range order parameters were obtained characterizing the order–disorder tran…
Comparative density-functional LCAO and plane-wave calculations ofLaMnO3surfaces
We compare two approaches to the atomic, electronic, and magnetic structures of LaMnO3 bulk and the (001), (110) surfaces—hybrid B3PW with optimized LCAO basis set (CRYSTAL-2003 code) and GGA-PW91 with plane-wave basis set (VASP 4.6 code). Combining our calculations with those available in the literature, we demonstrate that combination of nonlocal exchange and correlation used in hybrid functionals allows to reproduce the experimental magnetic coupling constants Jab and Jc as well as the optical gap. Surface calculations performed by both methods using slab models show that the antiferromagnetic (AF) and ferromagnetic (FM) (001) surfaces have lower surface energies than the FM (110) surfac…
Theoretical modeling of antiferrodistortive phase transition forSrTiO3ultrathin films
Combining group-theoretical analysis and first-principles density functional theory calculations, we confirm theoretically the antiferrodistortive phase transition in ultrathin SrTiO${}_{3}$ (001) TiO${}_{2}$-terminated films and compare it with a similar transition in the bulk. We demonstrate phonon softening at the $M$ point of the surface Brillouin zone and analyze the change in the calculated electronic and phonon properties upon phase transition.
Phonon calculations in cubic and tetragonal phases of SrTiO3: A comparative LCAO and plane-wave study
The atomic, electronic structure and phonon frequencies have been calculated in cubic and low-temperature tetragonal SrTiO${}_{3}$ phases at the ab initio level. We demonstrate that the use of the hybrid exchange-correlation PBE0 functional gives the best agreement with experimental data. The results for the standard generalized gradient approximation (PBE) and hybrid PBE0 functionals are compared for the two types of approaches: a linear combination of atomic orbitals (CRYSTAL09 computer code) and plane waves (VASP5.2 code). The relation between cubic and tetragonal phases and the relevant antiferrodistortive phase transition is discussed in terms of group theory and is illustrated with an…