0000000000335322

AUTHOR

Stefan Eimer

showing 3 related works from this author

Protein content and lipid profiling of isolated native autophagosomes

2021

AbstractAutophagy is a central eukaryotic catabolic pathway responsible for clearance and recycling of an extensive portfolio of cargoes, which are packed in vesicles, called autophagosomes, and are delivered to lysosomes for degradation. Besides basal autophagy, which constantly degrades cellular material, the pathway is highly responsive to several stress conditions. However, the exact protein content and phospholipid composition of autophagosomes under changing autophagy conditions remain elusive so far. Here, we introduce a FACS-based approach for isolation of native unmanipulated autophagosomes and ensure the quality of the preparations. Employing quantitative proteomics and phospholip…

Protein contentAutophagosomechemistry.chemical_compoundCatabolismChemistryVesicleAutophagyQuantitative proteomicsPhospholipidLipid profilingCell biology
researchProduct

RAB18 Loss Interferes With Lipid Droplet Catabolism and Provokes Autophagy Network Adaptations

2020

Autophagy is dependent on appropriate lipid supply for autophagosome formation. The regulation of lipid acquisition and the autophagy network response to lipid-limiting conditions are mostly elusive. Here, we show that the knockout of the RAB GTPase RAB18 interferes with lipid droplet catabolism, causing an impaired fatty acid release. The resulting reduced lipid-droplet-derived lipid availability influences autophagy and provokes adaptive modifications of the autophagy network. These adjustments include increased expression and phosphorylation of ATG2B as well as augmented formation of the ATG12-ATG5 conjugate. Moreover, ATG9A shows an enhanced phosphorylation at amino acid residues tyrosi…

rab3 GTP-Binding ProteinsImmunoblottingGTPaseReal-Time Polymerase Chain Reaction03 medical and health sciences0302 clinical medicineMicroscopy Electron TransmissionStructural BiologyLipid dropletAutophagyHumansPhosphorylationTyrosineMolecular Biology030304 developmental biology0303 health sciencesMicroscopy ConfocalChemistryCatabolismAutophagyAutophagosomesLipid DropletsImmunohistochemistryCell biologyrab GTP-Binding ProteinsPhosphorylationlipids (amino acids peptides and proteins)RabCRISPR-Cas Systems030217 neurology & neurosurgeryRAB18HeLa CellsJournal of Molecular Biology
researchProduct

RAB18 impacts autophagy via lipid droplet-derived lipid transfer and is rescued by ATG9A

2018

AbstractAutophagy is a lysosomal degradation pathway that mediates protein and organelle turnover and maintains cellular homeostasis. Autophagosomes transport cargo to lysosomes and their formation is dependent on an appropriate lipid supply. Here, we show that the knockout of the RAB GTPase RAB18 interferes with lipid droplet (LD) metabolism, resulting in an impaired fatty acid mobilization. The reduced LD-derived lipid availability influences autophagy and provokes adaptive modifications of the autophagy network, which include increased ATG2B expression and ATG12-ATG5 conjugate formation as well as enhanced ATG2B and ATG9A phosphorylation. Phosphorylation of ATG9A directs this transmembra…

ChemistryLipid dropletAutophagyOrganellePhosphorylationCellular homeostasisGTPaseRabRAB18Cell biology
researchProduct