0000000000335398

AUTHOR

Sebastian G. J. Emmerling

Patterning of a Surface Immobilized ATRP Initiator with an Inkjet Printer

A new technique for patterning polymer brushes on the micrometer scale has been developed in which an inkjet printer was used to deposit droplets of acid on a surface-immobilized initiator for atom transfer radical polymerization (ATRP). The acid cleaved an ester bond in the ATRP initiator in a saponification reaction. As a result, the ATRP initiator was rendered inactive. To control the degree of defunctionalization, a new initiator containing a weak ester bond was derived from a tertiary alcohol. Comparison to an established ATRP initiator, derived from a primary alcohol, showed that the novel initiator was defunctionalized with a higher efficiency. Control of the reaction time allowed to…

research product

From Spherical Mesopores to Worm-Shaped Mesopores : Morphology Transition in Titania–Polystyrene-b-poly(ethylene oxide) Composite Films with Increasing Sol–Gel Reaction Time

A morphology transition from spherical mesopores to worm-shaped mesopores within titania block copolymer composite thin films has been observed by varying the sol–gel reaction time from 40 min to 48 h in the four-component templating system of polystyrene-$\mathit{b}$-poly(ethylene oxide) (PS-$\mathit{b}$-PEO), 1,4-dioxane, concentrated HCl, and titanium tetraisopropoxide (TTIP) with a PS-$\mathit{b}$-PEO mass concentration of 0.25 wt.-%. The impact of the sol–gel reaction time on the local structure, long-range lateral structure, and vertical structure of the as-prepared, calcined, and UV-degraded thin films as well as the structural changes in solution have been systematically investigate…

research product

Morphology evolution in mesoporous titania block copolymer composite films with increasing Sol-Gel reaction time

A morphology evolution of thin films of titania from spherical mesopores to worm-shaped mesopores was realized by simply varying the sol–gel reaction time from 46 min to 25 h in the quadruple system consisting of polystyrene–block-poly(ethylene oxide) (PS–b-PEO), 1,4-dioxane, concentrated HCl, and titanium tetraisopropoxide (TTIP). Imaging techniques including scanning electron microscopy (SEM) and atomic force microscopy (AFM) were applied to investigate the local structure change of the as-prepared, calcined, and UV-degraded composite films. Grazing incidence small angle X-ray scattering (GISAXS) experiments prove that the structure change in local areas is representative of that over the…

research product