0000000000335889

AUTHOR

B. Kalithasan

Ultra-short pulse propagation in birefringent fibers—the projection operator method

We examine the propagation of ultra-short optical light pulses in dispersion-managed birefringent fiber transmission systems, in which the pulse dynamics is governed by the coupled higher-order nonlinear Schrodinger equations with higher-order linear and nonlinear optical effects. We derive the equations of motion in terms of pulse parameters such as amplitude, temporal position, width, chirp, frequency and phase, using a projection operator method, and we obtain the spatial dynamical behavior of picosecond and femtosecond pulse parameters. From our detailed analysis, we show that the stimulated Raman scattering has a strong impact on the pulse dynamics.

research product

Modulational instability in optical fibers with arbitrary higher-order dispersion and delayed Raman response

International audience; We analyse modulational instability (MI) of electromagnetic waves in a large variety of optical fibers having different refractive-index profiles. For the normal-, anomalous-, and zero-dispersion regimes of the wave propagation, we show that whenever the second-order dispersion competes with higher-order dispersion (HOD), propagation of plane waves leads to a rich variety of dynamical behaviors. Most of the richness comes from the existence of critical behaviors, which include situations in which the HOD suppresses MI in the anomalous dispersion regime, and other situations in which the HOD acts in the opposite way by inducing non-conventional MI processes in the nor…

research product

Ultra-short pulse propagation in birefringent fibers-the projection operator method

International audience; We examine the propagation of ultra-short optical light pulses in dispersion-managed birefringent fiber transmission systems, in which the pulse dynamics is governed by the coupled higher-order nonlinear Schrödinger equations with higher-order linear and nonlinear optical effects. We derive the equations of motion in terms of pulse parameters such as amplitude, temporal position, width, chirp, frequency and phase, using a projection operator method, and we obtain the spatial dynamical behavior of picosecond and femtosecond pulse parameters. From our detailed analysis, we show that the stimulated Raman scattering has a strong impact on the pulse dynamics.

research product

Modulational instability and generation of self-induced transparency solitons in resonant optical fibers

International audience; We consider continuous-wave propagation through a fiber doped with two-level resonant atoms, which is described by a system of nonlinear Schrodinger-Maxwell-Bloch (NLS-MB) equations. We identify the modulational instability (MI) conditions required for the generation of ultrashort pulses, in cases of both anomalous and normal GVD (group-velocity dispersion). It is shown that the self-induced transparency (SIT) induces non-conventional MI sidebands. The main result is a prediction of the existence of both bright and dark SIT solitons in the anomalous and normal GVD regimes.

research product

Modulational instability in resonant optical fiber with higher-order dispersion effect

International audience; The modulational instability (MI) of an electromagnetic wave in a resonant optical fiber with a two-level system is investigated. In the normal dispersion regime, we find the occurrence of nonconventional MI sidebands which are induced by the two-level resonant atoms. We also observe that the MI gain spectra are suppressed by the higher-order dispersion effect in the anomalous dispersion regime.

research product

Generation of self-induced-transparency gap solitons by modulational instability in uniformly doped fiber Bragg gratings

We consider the continuous-wave (cw) propagation through a fiber Bragg grating that is uniformly doped with two-level resonant atoms. Wave propagation is governed by a system of nonlinear coupled-mode Maxwell-Bloch (NLCM-MB) equations. We identify modulational instability (MI) conditions required for the generation of ultrashort pulses in both anomalous and normal dispersion regimes. From a detailed linear stability analysis, we find that the atomic detuning frequency has a strong influence on the MI. That is, the atomic detuning frequency induces nonconventional MI sidebands at the photonic band gap (PBG) edges and near the PBG edges. Especially in the normal dispersion regime, MI occurs w…

research product

Critical behavior with dramatic enhancement of modulational instability gain in fiber systems with periodic variation dispersion

International audience; We analyze modulational instability (MI) of light waves in fiber systems with periodically varying dispersion. The dispersion fluctuation generates special waves, called nonconventional MI sidebands, which are shown to be highly sensitive to two fundamental system parameters. The first one is the average dispersion of the system. Surprisingly, the second parameter turns out to be the mean value of the dispersion coefficients of the two types of fibers of the system, which is then called “central dispersion.” These two parameters are used to control and optimize the MI process. In particular, we establish the existence of a critical region of the central dispersion at…

research product