0000000000336333

AUTHOR

Jakob Zopfi

0000-0002-8437-7344

showing 4 related works from this author

Comprehensive dataset of shotgun metagenomes from oxygen stratified freshwater lakes and ponds

2021

Stratified lakes and ponds featuring steep oxygen gradients are significant net sources of greenhouse gases and hotspots in the carbon cycle. Despite their significant biogeochemical roles, the microbial communities, especially in the oxygen depleted compartments, are poorly known. Here, we present a comprehensive dataset including 267 shotgun metagenomes from 41 stratified lakes and ponds mainly located in the boreal and subarctic regions, but also including one tropical reservoir and one temperate lake. For most lakes and ponds, the data includes a vertical sample set spanning from the oxic surface to the anoxic bottom layer. The majority of the samples were collected during the open wate…

Water microbiologyData DescriptorMicrobial ecologyNutrientPhylogenyTotal organic carbonlammet0303 health sciencesEcologyMicrobiotahiilen kiertoQgenomiikkaMiljövetenskapSubarctic climateAnoxic waters6. Clean waterComputer Science ApplicationsOceanographydataFreshwater ecologyStatistics Probability and UncertaintyInformation SystemsStatistics and ProbabilityBiogeochemical cycleClimate ChangeScienceLibrary and Information SciencesjärvetCarbon CycleEducationCarbon cycleGreenhouse Gases03 medical and health sciencesparasitic diseasesEcosystem14. Life underwaterPonds030304 developmental biologyEkologiBacteria030306 microbiology15. Life on landArchaeaOxygenmikrobiekologiaLakesmikrobistoBoreal13. Climate actionMetagenomeEnvironmental scienceMetagenomicsEnvironmental SciencesScientific Data
researchProduct

Photoferrotrophy: Remains of an Ancient Photosynthesis in Modern Environments

2017

Photoferrotrophy, the process by which inorganic carbon is fixed into organic matter using light as an energy source and reduced iron [Fe(II)] as an electron donor, has been proposed as one of the oldest photoautotrophic metabolisms on Earth. Under the iron-rich (ferruginous) but sulfide poor conditions dominating the Archean ocean, this type of metabolism could have accounted for most of the primary production in the photic zone. Here we review the current knowledge of biogeochemical, microbial and phylogenetic aspects of photoferrotrophy, and evaluate the ecological significance of this process in ancient and modern environments. From the ferruginous conditions that prevailed during most …

0301 basic medicineMicrobiology (medical)Biogeochemical cycle030106 microbiologyReviewChemoclineMicrobiology03 medical and health sciencesferruginous conditionsevolutionPhotic zone14. Life underwaterArchean oceanPrimary producersbiologyphotoferrotrophyEcologyBiosphereBiogeochemistryiron-rich meromictic lakes15. Life on landbiology.organism_classification030104 developmental biology13. Climate actionGreen sulfur bacteriaEnvironmental scienceanoxygenic phototrophsEnergy sourceFrontiers in Microbiology
researchProduct

Comprehensive dataset of shotgun metagenomes from stratified freshwater lakes and ponds

2020

AbstractStratified lakes and ponds featuring steep oxygen gradients are significant net sources of greenhouse gases and hotspots in the carbon cycle. Despite their significant biogeochemical roles, the microbial communities, especially in the oxygen depleted compartments, are poorly known. Here, we present a comprehensive dataset including 267 shotgun metagenomes from 41 stratified lakes and ponds mainly located in the boreal and subarctic regions, but also including one tropical reservoir and one temperate lake. For most lakes and ponds, the data includes a vertical sample set spanning from the oxic surface to the anoxic bottom layer. The majority of the samples were collected during the o…

Total organic carbonBiogeochemical cycleOceanographyBorealMetagenomicsEnvironmental scienceEcosystemAnoxic watersSubarctic climateCarbon cycle
researchProduct

Methanotrophy under Versatile Conditions in the Water Column of the Ferruginous Meromictic Lake La Cruz (Spain)

2016

Lakes represent a considerable natural source of methane to the atmosphere compared to their small global surface area. Methanotrophs in sediments and in the water column largely control methane fluxes from these systems, yet the diversity, electron accepting capacity, and nutrient requirements of these microorganisms have only been partially identified. Here, we investigated the role of electron acceptors alternative to oxygen and sulfate in microbial methane oxidation at the oxycline and in anoxic waters of the ferruginous meromictic Lake La Cruz, Spain. Active methane turnover in a zone extending well below the oxycline was evidenced by stable carbon isotope-based rate measurements. We o…

0301 basic medicineMicrobiology (medical)030106 microbiologylcsh:QR1-502MicrobiologyMethanelcsh:Microbiologyanoxic hypolimnion03 medical and health scienceschemistry.chemical_compoundWater columnNitrateSulfateFerruginous; Meromixis; Oxycline; Anoxic hypolimnion; Methane oxidation; Aerobic methanotrophsOriginal ResearchEcologymethane oxidationOxygen evolutionmeromixisferruginousAnoxic watersoxycline030104 developmental biologychemistry13. Climate actionIsotopes of carbonEnvironmental chemistryAnaerobic oxidation of methaneaerobic methanotrophsFrontiers in Microbiology
researchProduct