0000000000336458

AUTHOR

Daniel Abankwa

0000-0003-2769-0745

Targeting prohibitins at the cell surface prevents Th17-mediated autoimmunity.

T helper (Th)17 cells represent a unique subset of CD4(+) T cells and are vital for clearance of extracellular pathogens including bacteria and fungi. However, Th17 cells are also involved in orchestrating autoimmunity. By employing quantitative surface proteomics, we found that the evolutionarily conserved prohibitins (PHB1/2) are highly expressed on the surface of both murine and human Th17 cells. Increased expression of PHBs at the cell surface contributed to enhanced CRAF/MAPK activation in Th17 cells. Targeting surface‐expressed PHBs on Th17 cells with ligands such as Vi polysaccharide (Typhim vaccine) inhibited CRAF‐MAPK pathway, reduced interleukin (IL)‐17 expression and ameliorated …

research product

A subset of flavaglines inhibits KRAS nanoclustering and activation.

The RAS oncogenes are frequently mutated in human cancers and among the three isoforms (KRAS, HRAS and NRAS), KRAS is the most frequently mutated oncogene. Here, we demonstrate that a subset of flavaglines, a class of natural anti-tumour drugs and chemical ligands of prohibitins, inhibit RAS GTP loading and oncogene activation in cells at nanomolar concentrations. Treatment with rocaglamide, the first discovered flavagline, inhibited the nanoclustering of KRAS, but not HRAS and NRAS, at specific phospholipid-enriched plasma membrane domains. We further demonstrate that plasma membrane-associated prohibitins directly interact with KRAS, phosphatidylserine and phosphatidic acid, and these int…

research product