0000000000336472

AUTHOR

Arianna Pellegrino

showing 1 related works from this author

Hybrid descriptive-inferential method for key feature selection in prostate cancer radiomics

2021

In healthcare industry 4.0, a big role is played by radiomics. Radiomics concerns the extraction and analysis of quantitative information not visible to the naked eye, even by expert operators, from biomedical images. Radiomics involves the management of digital images as data matrices, with the aim of extracting a number of morphological and predictive variables, named features, using automatic or semi-automatic methods. Multidisciplinary methods as machine learning and deep learning are fully involved in this field. However, the large number of features requires efficient and effective core methods for their selection, in order to avoid bias or misinterpretations problems. In this work, t…

business.industryComputer sciencefeature selection image analysis prostate cancer radiomicsFeature selectionManagement Science and Operations Researchmedicine.diseaseMachine learningcomputer.software_genreprostate cancerGeneral Business Management and AccountingProstate cancerRadiomicsimage analysisradiomicsModeling and SimulationFeature selectionmedicineKey (cryptography)Artificial intelligencebusinesscomputer
researchProduct