0000000000336606
AUTHOR
Elisa Grazioli
SFRR-E Young Investigator AwardeeαB-crystallin modulation after acute exercise in skeletal muscle: the role of oxidative stress and fiber composition.
αB-crystallin (CRYAB) is a member of the small heat shock proteins implicated in various biological functions, particularly in skeletal muscle where it is involved in adaptive remodelling processes, activation of gene transcription and stabilization of nascent proteins.In this research we analysed αB-crystallin' response in mouse gastrocnemius at 15' and 30' of recovery from an acute aerobic exercise (1hour), correlating its modulation with oxidative stress level and fiber composition, red (RG) and white gastrocnemius (WG).We found for the first time that the acute exercise lead to a short term, specific increase of phospho-αB-crystallin level (pCRYAB) in the RG, while no changes were obser…
The early response of αB-crystallin to a single bout of aerobic exercise in mouse skeletal muscles depends upon fiber oxidative features
Besides its substantial role in eye lens, αB-crystallin (HSPB5) retains fundamental function in striated muscle during physiological or pathological modifications. In this study, we aimed to analyse the cellular and molecular factors driving the functional response of HSPB5 protein in different muscles from mice subjected to an acute bout of non-damaging endurance exercise or in C2C12 myocytes upon exposure to pro-oxidant environment, chosen as “in vivo” and “in vitro” models of a physiological stressing conditions, respectively.To this end, red (GR) and white gastrocnemius (GW), as sources of slow-oxidative and fast-glycolytic/oxidative fibers, as well as the soleus (SOL), mainly composed …
Exercise-Induced Activation and Translocation of αB-Crystallin in Skeletal Muscle Depends upon Fiber Type and Oxidative Stress
Alpha B-crystallin (CRYAB) is a member of the small heat shock proteins implicated in various biological functions, particularly in skeletal muscle tissue [1], where it results to be modulated following exercise-induced reactive oxygen species (ROS) [2]. In this work we aimed to analyse the CRYAB response to acute exercise with respect muscle fiber composition and to identify the underlying molecular mechanism by the utilization of the C2C12 “in vitro” cellular model. Our results highlighted as acute exercise determines a specific increase of phospho-CRYAB both in the red, but not white, gastrocnemius (GS), with an higher amount of oxidative and oxidative-glycolytic fibers, and in soleus (S…