0000000000337659

AUTHOR

Youseung Shin

showing 2 related works from this author

Design and synthesis of 1-aryl-5-anilinoindazoles as c-Jun N-terminal kinase inhibitors.

2012

Starting from pyrazole HTS hit (1), a series of 1-aryl-1H-indazoles have been synthesized as JNK3 inhibitors with moderate selectivity against JNK1. SAR studies led to the synthesis of 5r as double digital nanomolar JNK3 inhibitor with good in vivo exposure.

IndazolesStereochemistryClinical BiochemistryPharmaceutical SciencePlasma protein bindingPyrazoleBiochemistrychemistry.chemical_compoundStructure-Activity RelationshipIn vivoMitogen-Activated Protein Kinase 10Drug DiscoveryStructure–activity relationshipAnimalsMitogen-Activated Protein Kinase 8Molecular BiologyProtein Kinase InhibitorsAniline CompoundsChemistryKinaseArylOrganic Chemistryc-junJNK Mitogen-Activated Protein KinasesBrainCombinatorial chemistryRatsDrug DesignMolecular MedicineSelectivityHalf-LifeProtein BindingBioorganicmedicinal chemistry letters
researchProduct

Structure-Activity Relationships and X-ray Structures Describing the Selectivity of Aminopyrazole Inhibitors for c-Jun N-terminal Kinase 3 (JNK3) ove…

2009

c-Jun N-terminal kinase 3alpha1 (JNK3alpha1) is a mitogen-activated protein kinase family member expressed primarily in the brain that phosphorylates protein transcription factors, including c-Jun and activating transcription factor-2 (ATF-2) upon activation by a variety of stress-based stimuli. In this study, we set out to design JNK3-selective inhibitors that had >1000-fold selectivity over p38, another closely related mitogen-activated protein kinase family member. To do this we employed traditional medicinal chemistry principles coupled with structure-based drug design. Inhibitors from the aminopyrazole class, such as SR-3576, were found to be very potent JNK3 inhibitors (IC(50) = 7 nm)…

Models MolecularStereochemistryProtein ConformationPyrazoleCrystallography X-RayBiochemistryp38 Mitogen-Activated Protein Kinaseschemistry.chemical_compoundStructure-Activity RelationshipProtein structureMitogen-Activated Protein Kinase 10Insulin-Secreting CellsStructure–activity relationshipAnimalsHumansEnzyme InhibitorsPhosphorylationProtein kinase AMolecular BiologyCells CulturedIndazolebiologyActivating Transcription Factor 2Active siteCell BiologyActivating transcription factor 2RatschemistryProtein Structure and Foldingbiology.proteinPyrazolesSelectivityJournal of Biological Chemistry
researchProduct