0000000000337915

AUTHOR

Peng Luo

showing 2 related works from this author

Permanent genetic resources added to molecular ecology resources database 1 April 2010 - 31 May 2010

2010

Correspondance: Molecular Ecology Resources Primer Development Consortium, E-mail: editorial.office@molecol.com; International audience; This article documents the addition of 396 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Anthocidaris crassispina, Aphis glycines, Argyrosomus regius, Astrocaryum sciophilum, Dasypus novemcinctus, Delomys sublineatus, Dermatemys mawii, Fundulus heteroclitus,Homalaspis plana, Jumellea rossii, Khaya senegalensis, Mugil cephalus, Neoceratitis cyanescens, Phalacrocorax aristotelis, Phytophthora infestans, Piper cordulatum, Pterocarpus indicus, Rana dalmatina, Rosa pulverulenta, Saxifraga …

0106 biological sciencesPiper marginatumPHYLOGENYSemecarpusMOLECULAR MARKERSECOLOGYcomputer.software_genre010603 evolutionary biology01 natural sciences03 medical and health sciencesLaboratorium voor PlantenveredelingRana ibericaREFERENCEMENTSPECIESPOPULATION GENETICSGENBANKBotanyGeneticsLife ScienceMICROSATELLITE MARKERmicrosatellite marker databasePiper cordulatumEcology Evolution Behavior and Systematics030304 developmental biology[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesbiologyDatabaseEPS-2Bioint Moleculair PhytopathologyTAXONOMY15. Life on landL10 - Génétique et amélioration des animauxbiology.organism_classificationJumelleaLaboratorium voor PhytopathologieFundulusPlant BreedingINSECTEMOLECULAR ECOLOGY RESOURCE DATABASECATALOGUELaboratory of PhytopathologyFundulus olivaceusJumellea rectaL20 - Écologie animaleGENETIQUE DES POPULATIONScomputerECOLOGIEBiotechnology
researchProduct

A singularly perturbed Kirchhoff problem revisited

2020

Abstract In this paper, we revisit the singularly perturbation problem (0.1) − ( ϵ 2 a + ϵ b ∫ R 3 | ∇ u | 2 ) Δ u + V ( x ) u = | u | p − 1 u in  R 3 , where a , b , ϵ > 0 , 1 p 5 are constants and V is a potential function. First we establish the uniqueness and nondegeneracy of positive solutions to the limiting Kirchhoff problem − ( a + b ∫ R 3 | ∇ u | 2 ) Δ u + u = | u | p − 1 u in  R 3 . Then, combining this nondegeneracy result and Lyapunov-Schmidt reduction method, we derive the existence of solutions to (0.1) for ϵ > 0 sufficiently small. Finally, we establish a local uniqueness result for such derived solutions using this nondegeneracy result and a type of local Pohozaev identity.

010101 applied mathematicsIdentity (mathematics)Reduction (recursion theory)Applied Mathematics010102 general mathematicsUniquenessFunction (mathematics)Limiting0101 mathematics01 natural sciencesAnalysisMathematicsMathematical physicsJournal of Differential Equations
researchProduct