0000000000338262

AUTHOR

Shobbir Hussain

FICC-Seq: a method for enzyme-specified profiling of methyl-5-uridine in cellular RNA.

AbstractMethyl-5-uridine (m5U) is one the most abundant non-canonical bases present in cellular RNA, and in yeast is found at position U54 of tRNAs where modification is catalysed by the methyltransferase Trm2. Although the mammalian enzymes that catalyse m5U formation are yet to be identified via experimental evidence, based on sequence homology to Trm2, two candidates currently exist, TRMT2A and TRMT2B. Here we developed a genome-wide single-nucleotide resolution mapping method, Fluorouracil-Induced-Catalytic-Crosslinking-Sequencing (FICC-Seq), in order to identify the relevant enzymatic targets. We demonstrate that TRMT2A is responsible for the majority of m5U present in human RNA, and t…

research product

Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders.

Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5' tRNA-derived small RNA fragments. Accumulation of 5' tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell siz…

research product