0000000000338372
AUTHOR
C. Van Alsenoy
A Hirshfeld partitioning of polarizabilities of water clusters
International audience; A new Hirshfeld partitioning of cluster polarizability into intrinsic polarizabilities and charge delocalization contributions is presented. For water clusters, density-functional theory calculations demonstrate that the total polarizability of a water molecule in a cluster depends upon the number and type of hydrogen bonds the molecule makes with its neighbors. The intrinsic contribution to the molecular polarizability is transferable between water molecules displaying the same H-bond scheme in clusters of different sizes, and geometries, while the charge delocalization contribution also depends on the cluster size. These results could be used to improve the existin…
An ab initio softness metric to measure the similarity between all pairs of amino acids
Abstract The search for quantitative index of similarity between molecular moeties is important for its applications in pharmacology. Similarity is also an important concept in computational biology to measure the exchangeability of an amino acid by another in a protein sequence. In the present work, a distance between two molecules based on local and global softnesses of their fragments is defined. The method proposed is general and could be applied to any molecular library. It is first applied to compute the distance between the 190 pairs of different amino acids in their neutral states. Two amino acids belonging to the one of the biochemical class (aliphatic, sulfur-containing, acidic, ……
DFT study of polarizabilities and dipole moments of water clusters
Density functional theory (DFT) calculations with different exchange- correlation functionals, Becke's three-parameter exchange functional and the gradient- corrected functional of Lee, Yang, and Paar (B3LYP) and Becke's three-parameter functional with Perdew-Wang correlational functional (B3PW91), are performed to study the dielectric properties of small and medium-sized water clusters. For these H- bonded systems, we optimize the geometries and compute the dipole moments and polarizabilities using a supermolecule approach. The corresponding properties of the individual water molecules in the clusters are extracted from the molecular properties using the Hirshfeld expansion of the electron…