0000000000338432

AUTHOR

Jose L. Garcia

showing 1 related works from this author

Prototyping Crop Traits Retrieval Models for CHIME: Dimensionality Reduction Strategies Applied to PRISMA Data

2022

In preparation for new-generation imaging spectrometer missions and the accompanying unprecedented inflow of hyperspectral data, optimized models are needed to generate vegetation traits routinely. Hybrid models, combining radiative transfer models with machine learning algorithms, are preferred, however, dealing with spectral collinearity imposes an additional challenge. In this study, we analyzed two spectral dimensionality reduction methods: principal component analysis (PCA) and band ranking (BR), embedded in a hybrid workflow for the retrieval of specific leaf area (SLA), leaf area index (LAI), canopy water content (CWC), canopy chlorophyll content (CCC), the fraction of absorbed photo…

feature selectionCHIMEactive learningGeneral Earth and Planetary Scienceshybrid methodPRISMAprincipal component analysibiochemical and biophysical traitGaussian process regressionPRISMA; CHIME; hybrid methods; biochemical and biophysical traits; Gaussian process regression; active learning; principal component analysis; feature selectionRemote Sensing
researchProduct