0000000000338768

AUTHOR

C. López-sanjuan

showing 7 related works from this author

High redshift galaxies in the ALHAMBRA survey

2015

Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so called dropout technique or Ly-alpha selection. However, the availability of multifilter data allows now replacing the dropout selections by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims. Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing in th…

Physicseducation.field_of_studyPopulationFOS: Physical sciencesSampling (statistics)Astronomy and AstrophysicsContext (language use)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstrophysics - Astrophysics of GalaxiesRedshiftGalaxySpace and Planetary ScienceLimiting magnitudeAstrophysics of Galaxies (astro-ph.GA)Probability distributioneducationAstrophysics::Galaxy AstrophysicsPhotometric redshiftAstronomy & Astrophysics
researchProduct

The ALHAMBRA survey: An empirical estimation of the cosmic variance for merger fraction studies based on close pairs

2014

[Aims]: Our goal is to estimate empirically the cosmic variance that affects merger fraction studies based on close pairs for the first time. [Methods]: We compute the merger fraction from photometric redshift close pairs with 10 h−1 kpc ≤ rp ≤ 50 h−1 kpc and Δv ≤ 500 km s−1 and measure it in the 48 sub-fields of the ALHAMBRA survey. We study the distribution of the measured merger fractions that follow a log-normal function and estimate the cosmic variance σv as the intrinsic dispersion of the observed distribution. We develop a maximum likelihood estimator to measure a reliable σv and avoid the dispersion due to the observational errors (including the Poisson shot noise term). [Results]: …

Galaxies: fundamental parametersCosmology and Nongalactic Astrophysics (astro-ph.CO)Stellar massGalaxies: statisticsFOS: Physical sciencesAstrophysicsinteractions [Galaxies]Astrophysics::Cosmology and Extragalactic AstrophysicsPoisson distribution01 natural sciencesLuminositysymbols.namesakestatistics [Galaxies]0103 physical sciences010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsPhotometric redshiftPhysics[PHYS]Physics [physics]COSMIC cancer database010308 nuclear & particles physicsAstronomy and AstrophysicsCosmic varianceRedshiftGalaxyGalaxies: interactionsSpace and Planetary Sciencefundamental parameters [Galaxies]symbols[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

High redshift galaxies in the ALHAMBRA survey. II. Strengthening the evidence of bright-end excess in UV luminosity functions at 2.5 <= z<= 4.5 by PD…

2018

Context. Knowing the exact shape of the ultraviolet (UV) luminosity function (LF) of high-redshift galaxies is important to understand the star formation history of the early Universe. However, the uncertainties, especially at the faint and bright ends of the LFs, remain significant. Aims. In this paper, we study the UV LF of redshift z = 2:5 4.5 galaxies in 2.38 deg of ALHAMBRA data with I ≤ 24. Thanks to the large area covered by ALHAMBRA, we particularly constrain the bright end of the LF. We also calculate the cosmic variance and the corresponding bias values for our sample and derive their host dark matter halo masses. Methods.We have used a novel methodology based on redshift and magn…

Astrophysics::High Energy Astrophysical PhenomenaContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminosityhigh-redshift [Galaxies]galaxies: high-redshift0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsLuminosity function (astronomy)Physics[PHYS]Physics [physics]010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsCosmic varianceevolution [Galaxies]Astrophysics - Astrophysics of Galaxiesluminosity function [Galaxies]RedshiftGalaxyDark matter halogalaxies: luminosity functionSpace and Planetary Sciencemass functionMass functiongalaxies: evolution[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

THE ALHAMBRA SURVEY: EVOLUTION OF GALAXY SPECTRAL SEGREGATION

2016

arXiv:1601.03668v1

statistical [Methods]Cosmology and Nongalactic Astrophysics (astro-ph.CO)Large-scale structure of universeFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesMethods statisticalGalaxies: distances and redshiftsMethods: data analysis0103 physical sciencesdistances and redshifts [Galaxies]observations [Cosmology]data analysis [Methods]010303 astronomy & astrophysicsMethods: statisticalAstrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsCosmology: observationsFísicaAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesGalaxySpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The ALHAMBRA survey: Estimation of the clustering signal encoded in the cosmic variance

2015

[Aims]: The relative cosmic variance (σv) is a fundamental source of uncertainty in pencil-beam surveys and, as a particular case of count-in-cell statistics, can be used to estimate the bias between galaxies and their underlying dark-matter distribution. Our goal is to test the significance of the clustering information encoded in the σv measured in the ALHAMBRA survey. [Methods]: We measure the cosmic variance of several galaxy populations selected with B-band luminosity at 0.35 ≤ z< 1.05 as the intrinsic dispersion in the number density distribution derived from the 48 ALHAMBRA subfields. We compare the observational σv with the cosmic variance of the dark matter expected from the theory…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCorrelation function (astronomy)01 natural sciencesLuminosityStatistics [Galaxies]0103 physical sciencesDark matterStatistical dispersionCluster analysis010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsAstronomy and AstrophysicsCosmic varianceAstrophysics - Astrophysics of GalaxiesGalaxyRedshiftSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Galaxies: Statistics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The ALHAMBRA survey: tight dependence of the optical mass-to-light ratio on galaxy colour up to z = 1.5

2018

[Aims] Our goal is to characterise the dependence of the optical mass-to-light ratio on galaxy colour up to z = 1.5, expanding the redshift range explored in previous work. [Methods] From the redshifts, stellar masses, and rest-frame luminosities of the ALHAMBRA multi-filter survey, we derive the mass-to-light ratio versus colour relation for quiescent and for star-forming galaxies. The intrinsic relation and its physical dispersion are derived with a Bayesian inference model. [Results] The rest-frame i-band mass-to-light ratio of quiescent and star-forming galaxies presents a tight correlation with the rest-frame (g - i) colour up to z = 1.5. The mass-to-light ratio versus colour relation …

Research groupsLibrary scienceFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesstatistics [Galaxies]0103 physical sciencesmedia_common.cataloged_instanceAstrophysics::Solar and Stellar AstrophysicsEuropean union010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsgalaxies: statisticsmedia_commonFunding AgencyPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsAstronomy and Astrophysicsgalaxies: fundamental parametersAstrophysics - Astrophysics of GalaxiesSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)fundamental parameters [Galaxies]galaxies: stellar contentstellar content [Galaxies]Christian ministry
researchProduct

The ALHAMBRA survey: Accurate merger fractions by PDF analysis of photometric close pairs

2014

Our goal is to develop and test a novel methodology to compute accurate close pair fractions with photometric redshifts. We improve the current methodologies to estimate the merger fraction f_m from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space, (ii) including the variation in the luminosity of the sources with z in both the selection of the samples and in the luminosity ratio constrain, and (iii) splitting individual PDFs into red and blue spectral templates to deal robustly with colour selections. We test the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. The merger frac…

Astrophysics of Galaxies (astro-ph.GA)Astrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - Astrophysics of GalaxiesAstrophysics::Galaxy Astrophysics
researchProduct