0000000000340664

AUTHOR

Olga Umnova

Sound Propagation in Narrow Tubes with Periodically Spaced Lateral Cavities

International audience

research product

Acoustical properties of air-saturated porous material with periodically distributed dead-end pores

International audience; A theoretical and numerical study of the sound propagation in air-saturated porous media with straight main pores bearing lateral cavities (dead-ends) is presented. The lateral cavities are located at " nodes " periodically spaced along each main pore. The effect of periodicity in the distribution of the lateral cavities is studied, and the low frequency limit valid for the closely spaced dead-ends is considered separately. It is shown that the absorption coefficient and transmission loss are influenced by the viscous and thermal losses in the main pores as well as their perforation rate. The presence of long or short dead-ends significantly alters the acoustical pro…

research product

Low Frequency and Nonlinear Acoustical Behaviour of Plates with Perforations Bearing Periodically Spaced Flat Resonators

International audience

research product

Recent developments in the acoustical properties of perforated and porous materials containing dead-end pores

It was shown recently in Nevers, France, Sherbrooke, Canada and Salford, UK, that porous materials with semi-opened pores or materials with open pores bearing lateral cavities or resonators at the microscopic scale of the pores can result in peculiar sound absorption properties. Various examples of these materials can be found in engineering and in everyday life including bio-based materials. The cavities and resonators can be assimilated to dead-end pores, which are opened at one end and closed at the other. The dead-end pores are known to geophysicists. We studied them more recently in the field of engineering acoustics where the saturating fluid is air. The closed ends prevent the fluid …

research product

Propriétés acoustiques de matériaux perforés comprenant des pores dead-end périodiques pour des applications basses fréquences

International audience; Pour un matériau absorbant tel que la mélamine et pour une épaisseur assez faible (inférieure à 5 cm), l'absorption acoustique devient supérieure à 0.8 à partir d'une fréquence de l'ordre de 1000 Hz. Une étude récente [1] a montré que des matériaux perforés peu épais comportant le long des perforations des pores dead-ends (DE) régulièrement espacés peuvent permettre de produire des pics d'absorption supérieurs à 0.8 en basses fréquences (quelques centaines de Hz). Les dimensions des pores DE ainsi que leur périodicité peuvent être millimétrique ou submillimétrique de sorte que l'épaisseur totale du matériau soit de seulement quelques centimètres. Ces pores DE peuvent…

research product

Description of sound absorption by a flat resonator stacking metamaterial with double porosity model

Acoustic metamaterials can be designed by inserting along the path of a sound wave periodically spaced side resonators. An example of efficient design was recently proposed consisting of a perforated stacking of flat annular cavities (the pancake resonator), the perforation allowing the propagation of sound waves. The pancake resonator is used in absorber mode and the theoretical description of sound absorption can be achieved with the help of the theory of sound propagation in fluid saturated porous media in which two porosities are considered: the main porosity associated with the perforation and a porosity associated with the flat cavity volumes. Considering a perforation diameter and fl…

research product