0000000000341261
AUTHOR
Luca Perregrini
Efficient Pole Expansion of the Generalized Impedance Matrix Representation for Planar Waveguide Junctions
This paper proposes a novel pole expansion of the generalized impedance matrix representation for planar waveguide junctions. Proceeding in this way, we have obtained a very efficient algorithm for the accurate wide-band modelling of such junctions, since the most expensive computations are performed outside the frequency loop. For verification purposes, several practical examples are shown in order to prove the numerical efficiency and accuracy provided by this new technique.
Efficient analysis of waveguide filters by the integral equation technique and the BI-RME method
This paper presents the study of rectangular waveguide filters with rounded corners in the cross-section of the waveguides. These components are suitable for low-cost mass production and can be rigorously analyzed by efficient CAD tools. The analysis approach described in this paper is based on the integral equation technique in conjunction with the boundary integral-resonant mode expansion method. Two representative examples are also reported.
Efficient analysis of in-line waveguide filters and frequency-selective surfaces with stepped holes
This paper presents a novel method for the analysis of large classes of microwave and mm-wave passive components, including in-line waveguide filters, single- and multi-layer frequency selective surfaces, and open-ended waveguide array antennas. This method is based on the segmentation technique, which permits us to reduce complex components to cascaded waveguide step discontinuities, which are separately characterized through their generalized impedance matrices, as calculated by the integral equation (IE) technique and the boundary integral-resonant mode expansion (BI-RME) method. Some examples demonstrate the flexibility and efficiency of the IE/BI-RME method, and its utility in investig…