0000000000341352

AUTHOR

E. J. Ramberg

showing 10 related works from this author

Dispersive analysis ofKLμ3andKLe3scalar and vector form factors using KTeV data

2010

Using the published KTeV samples of K{sub L} {yields} {pi}{sup {+-}}e{sup {-+}}{nu} and K{sub L} {yields} {pi}{sup {+-}}{mu}{sup {-+}}{nu} decays, we perform a reanalysis of the scalar and vector form factors based on the dispersive parameterization. We obtain phase space integrals I{sub K}{sup e} = 0.15446 {+-} 0.00025 and I{sub K}{sup {mu}} = 0.10219 {+-} 0.00025. For the scalar form factor parameterization, the only free parameter is the normalized form factor value at the Callan-Treiman point (C); our best fit results in ln C = 0.1915 {+-} 0.0122. We also study the sensitivity of C to different parametrizations of the vector form factor. The results for the phase space integrals and C a…

PhysicsNuclear and High Energy PhysicsAntiparticleParticle physicsMuonMeson010308 nuclear & particles physicsHadronScalar (mathematics)Elementary particle01 natural sciencesParticle decay0103 physical sciencesAtomic physics010306 general physicsDimensionless quantityPhysical Review D
researchProduct

Hard single diffraction in p̄p collisions at s=630 and 1800 GeV

2002

Using the D empty set detector, we have studied events produced in (p) over barp collisions that contain large forward regions with very little energy deposition ("rapidity gaps") and concurrent jet production at center-of-mass energies of roots = 630 and 1800 GeV. The fraction of events with forward or central jets associated with rapidity gaps is compared to predictions for hard diffraction. We also extract the momentum loss for scattered protons in such processes. (C) 2002 Elsevier Science B.V. All rights reserved.

DiffractionPhysicsParticle physicsNuclear and High Energy Physics010308 nuclear & particles physicsDetectorEmpty setHERAJet (particle physics)01 natural sciencesNuclear physicsPomeron0103 physical sciencesMomentum lossRapidityHigh Energy Physics::Experiment010306 general physicsPhysics Letters B
researchProduct

The upgraded DO detector

2006

The DØ experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of s…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsTevatron01 natural sciencesParticle detectorlaw.inventionNuclear physicsData acquisitionlaw0103 physical sciencesFermilab010306 general physicsColliderInstrumentationPhysics010308 nuclear & particles physicsbusiness.industryDetectorElectrical engineeringParticle acceleratorD0 experimentExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPhysics::Accelerator PhysicsHigh Energy Physics::Experimentbusiness
researchProduct

Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g−2 Experiment

2021

The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $\omega_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment's muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of $a_{\mu}({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the preces…

Physics::Instrumentation and DetectorsMeasure (physics)FOS: Physical sciences7. Clean energy01 natural sciencesOmegaHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment; High Energy Physics - Experiment; Nuclear ExperimentHigh Energy Physics - Experiment (hep-ex)muon0103 physical sciencesFermilabNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentLarmor precessionPhysicsMuon010308 nuclear & particles physicsSettore FIS/01 - Fisica Sperimentaleanomalous magnetic moment3. Good healthMagnetic fieldPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentStorage ringFermi Gamma-ray Space TelescopePhysical Review
researchProduct

tt¯production cross section inpp¯collisions ats=1.8TeV

2003

PhysicsNuclear and High Energy PhysicsCross section (physics)Particle physics010308 nuclear & particles physics0103 physical sciencesProduction (computer science)010306 general physics01 natural sciencesPhysical Review D
researchProduct

Search for Leptoquark Pairs Decaying intoνν+jetsinpp¯Collisions ats=1.8TeV

2002

We present the results of a search for leptoquark (LQ) pairs in (85.2+/-3.7) pb(-1) of pp* collider data collected by the D0 experiment at the Fermilab Tevatron. We observe no evidence for leptoquark production and set a limit on sigma(pp*-->LQLQ-->nunu+jets) as a function of the mass of the leptoquark (m(LQ)). Assuming the decay LQ-->nuq, we exclude scalar leptoquarks for m(LQ) < 98 GeV/c(2), and vector leptoquarks for m(LQ) < 200 GeV/c(2) and coupling which produces the minimum cross section, at a 95% confidence level.

PhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyScalar (mathematics)TevatronGeneral Physics and AstronomySigmaD0 experiment7. Clean energy01 natural scienceslaw.inventionNuclear physicslaw0103 physical sciencesHigh Energy Physics::ExperimentLeptoquarkFermilab010306 general physicsColliderPhysical Review Letters
researchProduct

Search for the Scalar Top Quark inpp¯Collisions ats=1.8TeV

2002

We have performed a search for scalar top quark (stop) pair production in the inclusive electron-muon-missing transverse energy final state, using a sample of p (p) over bar events corresponding to 108.3 pb (-1) of data collected with the D0 detector at Fermilab. The search is done in the framework of the minimal supersymmetric standard model assuming that the sneutrino is the lightest supersymmetric particle. For the dominant decays of the lightest stop, (t) over tilde-->b (χ) over tilde (+)(1) and (t) over tilde-->bl (ν) over tilde , no evidence for signal is found. We derive cross-section limits as a function of stop ((t) over tilde), chargino ((χ) over tilde (+)(1)), and sneutrino ((ν) …

PhysicsParticle physicsTop quark010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyScalar (mathematics)General Physics and AstronomySupersymmetry01 natural sciencesLightest Supersymmetric ParticleNuclear physicsCharginoPair production0103 physical sciencesHigh Energy Physics::ExperimentFermilab010306 general physicsMinimal Supersymmetric Standard ModelPhysical Review Letters
researchProduct

Search for R-parity violating supersymmetry in two-muon and four-jet topologies

2002

We present results of a search for R-parity-violating decay of the neutralino chi;01, taken as the lightest supersymmetric particle, to a muon and two jets. The decay proceeds through a lepton-number violating coupling lambda(')(2jk) (j=1,2; k=1,2,3), with R-parity conservation in all other production and decay processes. In the absence of candidate events from 77.5+/-3.9 pb(-1) of data collected by the D0 experiment at the Fermilab Tevatron in pp collisions at sqrt[s]=1.8 TeV, and with an expected background of 0.18+/-0.03+/-0.02 events, we set limits on squark and gluino masses within the framework of the minimal low-energy supergravity-supersymmetry model.

PhysicsParticle physicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTevatronGeneral Physics and AstronomySupersymmetryD0 experiment7. Clean energy01 natural sciencesLightest Supersymmetric ParticleNuclear physicsR-parityExperimental High Energy Physics0103 physical sciencesNeutralino[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentFermilab010306 general physics
researchProduct

Improved W boson mass measurement with the DO detector

2002

We have measured the W boson mass using the DO detector and a data sample of 82 pb(-1) from the Fermilab Tevatron collider. This measurement uses W-->enu decays, where the electron is close to a boundary of a central electromagnetic calorimeter module. Such "edge" electrons have not been used in any previous DO analysis, and represent a 14% increase in the W boson sample size. For these electrons, new response and resolution parameters are determined, and revised backgrounds and underlying event energy flow measurements are made. When the current measurement is combined with previous DO W boson mass measurements, we obtain M-W=80.483+/-0.084 GeV. The 8% improvement from the previous DO meas…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsDetectorResolution (electron density)TevatronElectron7. Clean energy01 natural scienceslaw.inventionNuclear physicslawEnergy flowExperimental High Energy Physics0103 physical sciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::ExperimentFermilab010306 general physicsColliderBosonPHYSICAL REVIEW D
researchProduct

Search for minimal supergravity in single-electron events with jets and large missing transverse energy inpp¯collisions ats=1.8TeV

2002

We describe a search for evidence of minimal supergravity (MSUGRA) in 92.7 pb(-1) of data collected with the D empty set detector at the Fermilab Tevatron p (p) over bar collider at roots=1.8 TeV. Events with a single electron, four or more jets, and large missing transverse energy were used in this search. The major backgrounds are from W+jets, misidentified multijet, t (t) over bar, and WW production. We observe no excess above the expected number of background events in our data. A new limit in terms of MSUGRA model parameters is obtained.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsSupergravityHigh Energy Physics::PhenomenologyTevatronElectronExpected value7. Clean energy01 natural scienceslaw.inventionStandard ModelNuclear physicslaw0103 physical sciencesHigh Energy Physics::ExperimentFermilab010306 general physicsColliderPhysical Review D
researchProduct