Robust stability and stabilization of uncertain T-S fuzzy systems with time-varying delay: An input-output approach
An input-output approach to the stability and stabilization of uncertain Takagi-Sugeno (T-S) fuzzy systems with time-varying delay is proposed in this paper. The time-varying parameter uncertainties are assumed to be norm-bounded, and the delay is intervally time varying. A novel method is employed to approximate the time-varying delay, based on which the considered system is transformed into a feedback interconnection form. The new formulation of the system is comprised of a forward subsystem with constant time delay and a feedback subsystem embedding the uncertainties. By applying the scaled small-gain theorem to the converted system, less conservative stability and stabilization criteria…
Data-based modeling of vehicle crash using adaptive neural-fuzzy inference system
Vehicle crashes are considered to be events that are extremely complex to be analyzed from the mathematical point of view. In order to establish a mathematical model of a vehicle crash, one needs to consider various areas of research. For this reason, to simplify the analysis and improve the modeling process, in this paper, a novel adaptive neurofuzzy inference system (ANFIS-based) approach to reconstruct kinematics of colliding vehicles is presented. A typical five-layered ANFIS structure is trained to reproduce kinematics (acceleration, velocity, and displacement) of a vehicle involved in an oblique barrier collision. Subsequently, the same ANFIS structure is applied to simulate different…
Adaptive neural-fuzzy inference system based method to modeling of vehicle crash
Various areas of research need to be considered in order to establish a mathematical model of a vehicle crash. To enhance the modeling process, a novel ANFIS-based approach to reconstruct behavior of impacting vehicles is presented in this paper. Kinematics of center of gravity (COG) a vehicle involved in an oblique barrier collision is reproduced by application of a five-layered ANFIS structure. Then, the same ANFIS system is used to simulate a different collision type than the one which was used in the training stage. The points of interests are selected to be the locations of accelerometers mounting. The accuracy of the proposed method is evaluated by the comparative analysis with the re…