0000000000343628

AUTHOR

Sabine Reyda

Optimized recombinant dense bodies of human cytomegalovirus efficiently prime virus specific lymphocytes and neutralizing antibodies without the addition of adjuvant.

Control of human cytomegalovirus (HCMV) infection correlates with the reconstitution of antiviral T lymphocytes in haematopoietic stem cell transplant recipients. A vaccine to foster this reconstitution and to ameliorate the severe consequences of HCMV reactivation is yet unavailable. This work focused on providing a rationale for the amendment of the yields and the antigenic composition of a vaccine, based on subviral dense bodies (DB) of HCMV. Modified DB were generated that contained the HLA-A2 presented IE1 model peptide TMYGGISLL, integrated at different positions in the major DB protein pp65. Insertion at position W175 of pp65 allowed efficient formation of recDB in the cytoplasm of i…

research product

Myeloid cell-synthesized coagulation Factor X dampens anti-tumor immunity

Immune evasion in the tumor microenvironment (TME) is a crucial barrier for effective cancer therapy, and plasticity of innate immune cells may contribute to failures of targeted immunotherapies. Here, we show that rivaroxaban, a direct inhibitor of activated coagulation factor X (FX), promotes antitumor immunity by enhancing infiltration of dendritic cells and cytotoxic T cells at the tumor site. Profiling FX expression in the TME identifies monocytes and macrophages as crucial sources of extravascular FX. By generating mice with immune cells lacking the ability to produce FX, we show that myeloid cell-derived FX plays a pivotal role in promoting tumor immune evasion. In mouse models of ca…

research product

Exogenous introduction of an immunodominant peptide from the non-structural IE1 protein of human cytomegalovirus into the MHC class I presentation pathway by recombinant dense bodies

Exogenous introduction of particle-associated proteins of human cytomegalovirus (HCMV) into the major histocompatibility complex (MHC) class I presentation pathway by subviral dense bodies (DB) is an effective way to sensitize cells against CD8 T-cell (CTL) recognition and killing. Consequently, these particles have been proposed as a platform for vaccine development. We have developed a strategy to refine the antigenic composition of DB. For proof of principle, an HCMV recombinant (RV-VM3) was generated that encoded the immunodominant CTL determinant IE1TMY from the IE1 protein in fusion with the major constituent of DB, the tegument protein pp65. To generate RV-VM3, a bacterial artificial…

research product

Modification of the major tegument protein pp65 of human cytomegalovirus inhibits virus growth and leads to the enhancement of a protein complex with pUL69 and pUL97 in infected cells

The tegument protein pp65 of human cytomegalovirus (HCMV) is abundant in lytically infected human foreskin fibroblasts (HFF), as well as in virions and subviral dense bodies (DB). Despite this, we showed previously that pp65 is dispensable for growth in HFF. In the process of refining a DB-based vaccine candidate, different HCMV mutants were generated, expressing a dominant HLA-A2-presented peptide of the IE1 protein fused to pp65. One of the mutant viruses (RV-VM1) surprisingly showed marked impairment in virus release from HFF. We hypothesized that analysis of the phenotypic alterations of RV-VM1 would provide insight into the functions of pp65, poorly defined thus far. RV-VM1 infection r…

research product

Macrophage protease-activated receptor 2 regulates fetal liver erythropoiesis in mice.

AbstractDeficiencies in many coagulation factors and protease-activated receptors (PARs) affect embryonic development. We describe a defect in definitive erythropoiesis in PAR2-deficient mice. Embryonic PAR2 deficiency increases embryonic death associated with variably severe anemia in comparison with PAR2-expressing embryos. PAR2-deficient fetal livers display reduced macrophage densities, erythroblastic island areas, and messenger RNA expression levels of markers for erythropoiesis and macrophages. Coagulation factor synthesis in the liver coincides with expanding fetal liver hematopoiesis during midgestation, and embryonic factor VII (FVII) deficiency impairs liver macrophage development…

research product

Proteomic Analyses of Human Cytomegalovirus Strain AD169 Derivatives Reveal Highly Conserved Patterns of Viral and Cellular Proteins in Infected Fibroblasts

Human cytomegalovirus (HCMV) particle morphogenesis in infected cells is an orchestrated process that eventually results in the release of enveloped virions. Proteomic analysis has been employed to reveal the complexity in the protein composition of these extracellular particles. Only limited information is however available regarding the proteome of infected cells preceding the release of HCMV virions. We used quantitative mass spectrometry to address the pattern of viral and cellular proteins in cells, infected with derivatives of the AD169 laboratory strain. Our analyses revealed a remarkable conservation in the patterns of viral and of abundant cellular proteins in cells, infected for 2…

research product

The Tegument Protein pp65 of Human Cytomegalovirus Acts as an Optional Scaffold Protein That Optimizes Protein Uploading into Viral Particles

ABSTRACT The mechanisms that lead to the tegumentation of herpesviral particles are only poorly defined. The phosphoprotein 65 (pp65) is the most abundant constituent of the virion tegument of human cytomegalovirus (HCMV). It is, however, nonessential for virion formation. This seeming discrepancy has not met with a satisfactory explanation regarding the role of pp65 in HCMV particle morphogenesis. Here, we addressed the question of how the overall tegument composition of the HCMV virion depended on pp65 and how the lack of pp65 influenced the packaging of particular tegument proteins. To investigate this, we analyzed the proteomes of pp65-positive (pp65pos) and pp65-negative (pp65neg) viri…

research product

Human cytomegalovirus pp71 stimulates major histocompatibility complex class i presentation of IE1-derived peptides at immediate early times of infection.

ABSTRACT Suppression of major histocompatibility complex (MHC) class I-mediated presentation of human cytomegalovirus (HCMV) peptides is an important mechanism to avoid CD8 T lymphocyte recognition and killing of infected cells. Of particular interest is how MHC class I presentation of essential regulatory immediate early (IE) proteins of HCMV can be effectively compromised at times when known viral immunoevasins are not abundantly expressed. The tegument protein pp71 had been suggested to be involved in MHC class I downregulation. Intriguingly, this polypeptide is also critically engaged in the initial derepression of the major IE gene locus, leading to enhanced expression of IE proteins I…

research product