0000000000343630

AUTHOR

Sabine Becke

Optimized recombinant dense bodies of human cytomegalovirus efficiently prime virus specific lymphocytes and neutralizing antibodies without the addition of adjuvant.

Control of human cytomegalovirus (HCMV) infection correlates with the reconstitution of antiviral T lymphocytes in haematopoietic stem cell transplant recipients. A vaccine to foster this reconstitution and to ameliorate the severe consequences of HCMV reactivation is yet unavailable. This work focused on providing a rationale for the amendment of the yields and the antigenic composition of a vaccine, based on subviral dense bodies (DB) of HCMV. Modified DB were generated that contained the HLA-A2 presented IE1 model peptide TMYGGISLL, integrated at different positions in the major DB protein pp65. Insertion at position W175 of pp65 allowed efficient formation of recDB in the cytoplasm of i…

research product

Modification of the major tegument protein pp65 of human cytomegalovirus inhibits virus growth and leads to the enhancement of a protein complex with pUL69 and pUL97 in infected cells

The tegument protein pp65 of human cytomegalovirus (HCMV) is abundant in lytically infected human foreskin fibroblasts (HFF), as well as in virions and subviral dense bodies (DB). Despite this, we showed previously that pp65 is dispensable for growth in HFF. In the process of refining a DB-based vaccine candidate, different HCMV mutants were generated, expressing a dominant HLA-A2-presented peptide of the IE1 protein fused to pp65. One of the mutant viruses (RV-VM1) surprisingly showed marked impairment in virus release from HFF. We hypothesized that analysis of the phenotypic alterations of RV-VM1 would provide insight into the functions of pp65, poorly defined thus far. RV-VM1 infection r…

research product