The Role of Eucalyptus Species on the Structural and Thermal Performance of Cellulose Nanocrystals (CNCs) Isolated by Acid Hydrolysis
Cellulose nanocrystals (CNCs) are attractive materials due to their renewable nature, high surface-to-volume ratio, crystallinity, biodegradability, anisotropic performance, or available hydroxyl groups. However, their source and obtaining pathway determine their subsequent performance. This work evaluates cellulose nanocrystals (CNCs) obtained from four different eucalyptus species by acid hydrolysis, i.e., E. benthamii, E. globulus, E. smithii, and the hybrid En × Eg. During preparation, CNCs incorporated sulphate groups to their structures, which highlighted dissimilar reactivities, as given by the calculated sulphate index (0.21, 0.97, 0.73 and 0.85, respectively). Although the impact o…
Polylactide-based self-reinforced composites biodegradation: Individual and combined influence of temperature, water and compost
[EN] Self-reinforced polymer composites (SRCs) are proposed as a suitable alternative for composite development, based in the combination of a polymeric matrix and a polymeric fibre made of the same polymer. SRCs based in polylactide (PLA) could be fully biodegradable and their valorisation routes could presumably be assimilated to those for neat PEA. In this sense, the aim of this study was to develop new self-reinforced PLA-based composites and ascertain their biodegradability. For this purpose, PLA-based SRCs were obtained through a thermo-compression procedure and their biodegradability corroborated under standard conditions (ISO 20200). Moreover, a deep study of the effect of the diffe…
In vitro validation of biomedical polyester-based scaffolds: Poly(lactide-co-glycolide) as model-case
[EN] Monitoring and understanding the in vitro behaviour of polyester based scaffolds both comprising the study of the hydrolytic degradation and the cell seeding viability is essential to ensure the desired functionality, according to a given biomedical purpose. As a model case to compare the performance of techniques to monitor the in vitro behaviour, poly(lactide-co-glycolide) (PLGA) scaffolds were chosen. The in vitro hydrolytic degradation of PLGA scaffolds was carried out in water and phosphate buffered saline (PBS). The evolution of the mass loss, the molar mass, the thermal properties and the surface morphology were monitored. The hydrolytic degradation media was correspondingly eva…
Dielectric spectroscopy of novel thiol-ene/epoxy thermosets obtained from allyl-modified hyperbranched poly (ethyleneimine) and diglycidylether of bisphenol A
[EN] Dielectric Thermal Analysis (DETA) of a series of new thermoset obtained by click chemistry was performed. The new thermosets were obtained by a dual-curing process consisting in a first photochemical thiol-ene, followed by a thermal thiol-epoxy starting from an allyl-terminated hyperbranched poly(ethyleneimine) (HBPEI) and different proportions of diglycidylether of bisphenol A (DGEBA) and the corresponding stoichiometric proportions of pentaerythritol tetrakis (3-mercaptopropionate, PETMP). The dielectric behaviour was obtained experimentally supressing the conductive effects. Two sub-Tg intramolecular non-cooperative gamma and beta relaxations and an intermolecular cooperative alpha…