0000000000344086

AUTHOR

Bin Hu

showing 3 related works from this author

Mechanisms of Hierarchical Cortical Maturation

2017

Cortical information processing is structurally and functionally organized into hierarchical pathways, with primary sensory cortical regions providing modality specific information and associative cortical regions playing a more integrative role. Historically, there has been debate as to whether primary cortical regions mature earlier than associative cortical regions, or whether both primary and associative cortical regions mature simultaneously. Identifying whether primary and associative cortical regions mature hierarchically or simultaneously will not only deepen our understanding of the mechanisms that regulate brain maturation, but it will also provide fundamental insight into aspects…

0301 basic medicineMini ReviewSensory systemlcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinemedicineneocortexpyramidal neurondevelopmentlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryAssociative propertyComputational modelNeocortexmaturationhierarchical maturationBrain maturationInformation processing030104 developmental biologymedicine.anatomical_structureNeural processingCellular modelPsychologyNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes

2021

Electroluminescence efficiencies of metal halide perovskite nanocrystals (PNCs) are limited by a lack of material strategies that can both suppress the formation of defects and enhance the charge carrier confinement. Here we report a one-dopant alloying strategy that generates smaller, monodisperse colloidal particles (confining electrons and holes, and boosting radiative recombination) with fewer surface defects (reducing non-radiative recombination). Doping of guanidinium into formamidinium lead bromide PNCs yields limited bulk solubility while creating an entropy-stabilized phase in the PNCs and leading to smaller PNCs with more carrier confinement. The extra guanidinium segregates to th…

Materials sciencebusiness.industry02 engineering and technologyQuímicaElectroluminescence021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials010309 opticsFormamidiniumNanocrystalVacancy defect0103 physical sciencesOptoelectronicsQuantum efficiencySpontaneous emissionCharge carrier0210 nano-technologybusinessPerovskite (structure)Nature Photonics
researchProduct

A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils : changing the paradigm

2022

The paradigm that permafrost-affected soils show restricted mineral nitrogen (N) cycling in favor of organic N compounds is based on the observation that net N mineralization rates in these cold climates are negligible. However, we find here that this perception is wrong. By synthesizing published data on N cycling in the plant-soil-microbe system of permafrost ecosystems we show that gross ammonification and nitrification rates in active layers were of similar magnitude and showed a similar dependence on soil organic carbon (C) and total N concentrations as observed in temperate and tropical systems. Moreover, high protein depolymerization rates and only marginal effects of C:N stoichiomet…

arktinen aluemaaperämeta-analyysigross N turnoverikiroutakasvillisuusilmastonmuutoksetnitrogenmeta-analysismineralisaatiomikrobistotypensidontaplant-soil-microbe systemkasvitmineralizationtypen kiertoglobal changepermafrost
researchProduct