0000000000344166
AUTHOR
Keith Whittington
showing 2 related works from this author
Filament sets and homogeneous continua
2007
Abstract New tools are introduced for the study of homogeneous continua. The subcontinua of a given continuum are classified into three types: filament , non-filament , and ample , with ample being a subcategory of non-filament. The richness of the collection of ample subcontinua of a homogeneous continuum reflects where the space lies in the gradation from being locally connected at one extreme to indecomposable at another. Applications are given to the general theory of homogeneous continua and their hyperspaces.
Filament sets and decompositions of homogeneous continua
2007
Abstract This paper applies the concepts introduced in the article: Filament sets and homogeneous continua [J.R. Prajs, K. Whittington, Filament sets and homogeneous continua, Topology Appl. 154 (8) (2007) 1581–1591, doi:10.1016/j.topol.2006.12.005 ] to decompositions of homogeneous continua. Several new or strengthened results on aposyndesis are given. Newly defined decompositions are discussed. A proposed classification scheme for homogeneous continua is shown to be mostly invariant under Jones' aposyndetic decomposition.