0000000000344836

AUTHOR

C.p. Burgess

showing 15 related works from this author

First year performance of the IceCube neutrino telescope

2006

The first sensors of the IceCube neutrino observatory were deployed at the South Pole during the austral summer of 2004-2005 and have been producing data since February 2005. One string of 60 sensors buried in the ice and a surface array of eight ice Cherenkov tanks took data until December 2005 when deployment of the next set of strings and tanks began. We have analyzed these data, demonstrating that the performance of the system meets or exceeds design requirements. Times are determined across the whole array to a relative precision of better than 3 ns, allowing reconstruction of muon tracks and light bursts in the ice, of air-showers in the surface array and of events seen in coincidence…

Astroparticle physicsPhysicsPhotomultiplierMuonPerformanceDetectorAstrophysics (astro-ph)AstronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsIceCube Neutrino ObservatoryAmandaIceCubeDetectionData acquisitionFirst yearAmanda; Detection; First year; IceCube; IceTop; Neutrino; Performance; South poleNeutrinoSouth poleAstronomiaIceTopNeutrinoCherenkov radiation
researchProduct

Search for Neutrino-Induced Cascades with AMANDA

2004

We report on a search for electro-magnetic and/or hadronic showers (cascades) induced by high energy neutrinos in the data collected with the AMANDA II detector during the year 2000. The observed event rates are consistent with the expectations for atmospheric neutrinos and muons. We place upper limits on a diffuse flux of extraterrestrial electron, tau and muon neutrinos. A flux of neutrinos with a spectrum $\Phi \propto E^{-2}$ which consists of an equal mix of all flavors, is limited to $E^2 \Phi(E)=8.6 x 10^{-7} GeV/(cm^{2} s sr)$ at a 90% confidence level for a neutrino energy range 50 TeV to 5 PeV. We present bounds for specific extraterrestrial neutrino flux predictions. Several of t…

PhysicsAMANDAParticle physicsMuonPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaHadronHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)FluxFOS: Physical sciencesAstronomy and AstrophysicsElectronAstrophysicsNeutrino astronomyAMANDA; Neutrino astronomy; Neutrino telescopesHigh Energy Physics::ExperimentNeutrino telescopesNeutrino astronomyNeutrinoEvent (particle physics)
researchProduct

Flux limits on ultra high energy neutrinos with AMANDA-B10

2005

Abstract Data taken during 1997 with the AMANDA-B10 detector are searched for a diffuse flux of neutrinos of all flavors with energies above 10 16  eV. At these energies the Earth is opaque to neutrinos, and thus neutrino induced events are concentrated at the horizon. The background are large muon bundles from down-going atmospheric air shower events. No excess events above the background expectation are observed and a neutrino flux following E −2 , with an equal mix of all flavors, is limited to E 2 Φ (10 15  eV  E 18  eV) ⩽ 0.99 × 10 −6  GeV cm −2  s −1  sr −1 at 90% confidence level. This is the most restrictive experimental bound placed by any neutrino detector at these energies. Bound…

PhysicsParticle physicsAMANDAMuonPhysics::Instrumentation and DetectorsUHE neutrinosAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoHigh Energy Physics::PhenomenologyFluxAstronomy and AstrophysicsSolar neutrino problemAMANDA; Neutrino astronomy; Neutrino telescopes; UHE neutrinosNeutrino detectorNeutrino astronomyMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyNeutrino telescopes
researchProduct

NEUTRINO ASTRONOMY AND COSMIC RAYS AT THE SOUTH POLE: LATEST RESULTS FROM AMANDA AND PERSPECTIVES FOR ICECUBE

2005

The AMANDA neutrino telescope has been in operation at the South Pole since 1996. The present final array configuration, operational since 2000, consists of 677 photomultiplier tubes arranged in 19 strings, buried at depths between 1500 and 2000 m in the ice. The most recent results on a multi-year search for point sources of neutrinos will be shown. The study of events triggered in coincidence with the surface array SPASE and AMANDA provided a result on cosmic ray composition. Expected improvements from IceCube/IceTop will also be discussed.

PhysicsNuclear and High Energy PhysicsPhotomultiplierAstronomyAstronomy and AstrophysicsCosmic rayAstrophysicsSolar neutrino problemAtomic and Molecular Physics and OpticsCoincidencelaw.inventionTelescopeNeutrino detectorlawNeutrino astronomyNeutrinoInternational Journal of Modern Physics A
researchProduct

Resonant origin for density fluctuations deep within the Sun: helioseismology and magneto-gravity waves

2003

We analyze helioseismic waves near the solar equator in the presence of magnetic fields deep within the solar radiative zone. We find that reasonable magnetic fields can significantly alter the shapes of the wave profiles for helioseismic g-modes. They can do so because the existence of density gradients allows g-modes to resonantly excite Alfven waves, causing mode energy to be funnelled along magnetic field lines, away from the solar equatorial plane. The resulting wave forms show comparatively sharp spikes in the density profile at radii where these resonances take place. We estimate how big these waves might be in the Sun, and perform a first search for observable consequences. We find …

Solar neutrinoFOS: Physical sciencesAstrophysicsAstrophysics01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsHelioseismology010303 astronomy & astrophysicsSolar equatorPhysics010308 nuclear & particles physicsGravitational waveAstrophysics (astro-ph)FísicaAstronomy and AstrophysicsObservableRadiation zoneMagnetic fieldHigh Energy Physics - PhenomenologyAmplitude13. Climate actionSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary Astrophysics
researchProduct

Cornering solar radiative-zone fluctuations with KamLAND and SNO salt

2003

We update the best constraints on fluctuations in the solar medium deep within the solar Radiative Zone to include the new SNO-salt solar neutrino measurements. We find that these new measurements are now sufficiently precise that neutrino oscillation parameters can be inferred independently of any assumptions about fluctuation properties. Constraints on fluctuations are also improved, with amplitudes of 5% now excluded at the 99% confidence level for correlation lengths in the range of several hundred km. Because they are sensitive to correlation lengths which are so short, these solar neutrino results are complementary to constraints coming from helioseismology.

PhysicsParticle physics010308 nuclear & particles physicsSolar neutrinoAstrophysics (astro-ph)FísicaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesRadiation zoneComputational physicsHigh Energy Physics - PhenomenologyAmplitudeHigh Energy Physics - Phenomenology (hep-ph)13. Climate action0103 physical sciencesPhysics::Space PhysicsRange (statistics)Astrophysics::Solar and Stellar AstrophysicsHigh Energy Physics::ExperimentHelioseismology010306 general physicsNeutrino oscillation
researchProduct

IceCube contributions to the XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006)

2008

IceCube contributions to the XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006) Weihai, China - August 15-22

PhysicsNuclear and High Energy PhysicsHigh energyCosmic rayAstrophysicsChinaAtomic and Molecular Physics and OpticsNuclear Physics B - Proceedings Supplements
researchProduct

Optical properties of deep glacial ice at the South Pole

2006

We have remotely mapped optical scattering and absorption in glacial ice at the South Pole for wavelengths between 313 and 560 nm and depths between 1100 and 2350 m. We used pulsed and continuous light sources embedded with the AMANDA neutrino telescope, an array of more than six hundred photomultiplier tubes buried deep in the ice. At depths greater than 1300 m, both the scattering coefficient and absorptivity follow vertical variations in concentration of dust impurities, which are seen in ice cores from other Antarctic sites and which track climatological changes. The scattering coefficient varies by a factor of seven, and absorptivity (for wavelengths less than ∼450 nm) varies by a fact…

Atmospheric ScienceSoil ScienceMineralogyAquatic ScienceOceanographyLight scatteringPhysics::GeophysicsIce coreGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Absorption (electromagnetic radiation)Physics::Atmospheric and Oceanic PhysicsEarth-Surface ProcessesWater Science and Technologygeographygeography.geographical_feature_categoryEcologyScatteringPaleontologyForestryGlacierMolar absorptivityWavelengthGeophysicsSpace and Planetary ScienceAttenuation coefficientAstrophysics::Earth and Planetary AstrophysicsGeologyJournal of Geophysical Research
researchProduct

The IceCube prototype string in Amanda

2006

The Antarctic Muon And Neutrino Detector Array (Amanda) is a high-energy neutrino telescope. It is a lattice of optical modules (OM) installed in the clear ice below the South Pole Station. Each OM contains a photomultiplier tube (PMT) that detects photons of Cherenkov light generated in the ice by muons and electrons. IceCube is a cubic-kilometer-sized expansion of Amanda currently being built at the South Pole. In IceCube the PMT signals are digitized already in the optical modules and transmitted to the surface. A prototype string of 41 OMs equipped with this new all-digital technology was deployed in the Amanda array in the year 2000. In this paper we describe the technology and demonst…

Antarctic Muon And Neutrino Detector ArrayAstroparticle physicsPhysicsNuclear and High Energy PhysicsPhotomultiplierPhotonMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Neutrino telescopeAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomyAstrophysicsNeutrino telescopeAmandaIceCubeData acquisitionSignal digitizationAmanda; IceCube; Neutrino telescope; Signal digitizationInstrumentationCherenkov radiation
researchProduct

Limits on the muon flux from neutralino annihilations at the center of the Earth with AMANDA

2006

A search has been performed for nearly vertically upgoing neutrino-induced muons with the Antarctic Muon And Neutrino Detector Array (AMANDA), using data taken over the three year period 1997–99. No excess above the expected atmospheric neutrino background has been found. Upper limits at 90% confidence level have been set on the annihilation rate of neutralinos at the center of the Earth, as well as on the muon flux at AMANDA induced by neutrinos created by the annihilation products.

Astroparticle physicsPhysicsAntarctic Muon And Neutrino Detector ArrayParticle physicsAMANDAAnnihilationMuonAMANDA; Dark matter; IceCube; Neutralino; Neutrino telescopesPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyDark matterNeutralinoAstronomy and AstrophysicsIceCubeNuclear physicsWIMPNeutralinoDark matterHigh Energy Physics::ExperimentNeutrinoNeutrino telescopes
researchProduct

Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

2007

We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live-time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit \Phi^{0}=(E/…

Astroparticle physicsPhysicsNuclear and High Energy PhysicsMuonAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectSolar neutrinoAstrophysics (astro-ph)High Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsSolar neutrino problemAstrophysicsSkyAstronomiaMeasurements of neutrino speedHigh Energy Physics::Experimentddc:530NeutrinoNeutrino astronomymedia_common
researchProduct

Results from the AMANDA neutrino telescope

2004

The Amanda neutrino telescope at the South Pole has been taking data since 1996. Stepwise upgraded, it reached its final stage in January 2000. We present results from the search for extraterrestrial neutrinos, neutrinos from dark matter annihilation and magnetic monopoles.

PhysicsNuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoHigh Energy Physics::PhenomenologyDark matterAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsSolar neutrino problemAtomic and Molecular Physics and Opticslaw.inventionTelescopeNeutrino detectorlawMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoNuclear Physics B - Proceedings Supplements
researchProduct

On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

2006

The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN mode…

AMANDAActive galactic nucleusAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsIceCubeLuminosityAGNNeutrinosBlazarAstrophysics::Galaxy AstrophysicsAGN; AMANDA; IceCube; Neutrinos; Point sources; Source stackingAstroparticle physicsPhysicsAstrophysics (astro-ph)Point sourcesAstronomyAstronomy and AstrophysicsQuasarSource stackingNeutrino detectorAstronomiaHigh Energy Physics::ExperimentNeutrino
researchProduct

Large mixing angle oscillations as a probe of the deep solar interior

2002

We re-examine the sensitivity of solar neutrino oscillations to noise in the solar interior using the best current estimates of neutrino properties. Our results show that the measurement of neutrino properties at KamLAND provides new information about fluctuations in the solar environment on scales to which standard helioseismic constraints are largely insensitive. We also show how the determination of neutrino oscillation parameters from a combined fit of KamLAND and solar data depends strongly on the magnitude of solar density fluctuations. We argue that a resonance between helioseismic and Alfven waves might provide a physical mechanism for generating these fluctuations and, if so, neutr…

Particle physicsPhysics::Instrumentation and DetectorsSolar neutrinoFOS: Physical sciencesAstrophysics7. Clean energy01 natural sciencesResonance (particle physics)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physicsNeutrino oscillationMixing (physics)Physics010308 nuclear & particles physicsAstrophysics (astro-ph)FísicaAstronomy and AstrophysicsRadiation zoneComputational physicsMagnetic fieldHigh Energy Physics - Phenomenology13. Climate actionSpace and Planetary SciencePhysics::Space PhysicsHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrinoNoise (radio)
researchProduct

Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector

2005

A search for an excess of muon-neutrinos from neutralino annihilations in the Sun has been performed with the AMANDA-II neutrino detector using data collected in 143.7 days of live-time in 2001. No excess over the expected atmospheric neutrino background has been observed. An upper limit at 90% confidence level has been obtained on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 100 GeV-5000 GeV.

Astroparticle physicsPhysicsParticle physicsRange (particle radiation)AMANDAMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDetectorDark matterHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)NeutralinoFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAMANDA; Dark matter; Neutralino; Neutrino telescopesNuclear physicsNeutrino detectorNeutralinoMuon fluxDark matterHigh Energy Physics::ExperimentNeutrino telescopes
researchProduct