0000000000345015

AUTHOR

M. N. Gatti

showing 2 related works from this author

Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale

2011

The aim of this study was to assess the effect of several operational variables on both biological and separation process performance in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater. The pilot plant is equipped with two industrial hollow-fibre ultrafiltration membrane modules (PURON¿ Koch Membrane Systems, 30m 2 of filtration surface each). It was operated under mesophilic conditions (at 33°C), 70days of SRT, and variable HRT ranging from 20 to 6h. The effects of the influent COD/SO 4-S ratio (ranging from 2 to 12) and the MLTS concentration (ranging from 6 to 22gL -1) were also analysed. The main performance results were about 87% of COD removal, efflu…

Hollow-fibre membraneINGENIERIA HIDRAULICABiogasUltrafiltrationEffluentsPilot ProjectsWastewater treatmentWastewaterWaste Disposal FluidIndustrial effluentPerformance assessmentBioreactorsAnaerobiosisWaste Management and DisposalHollow fiber membranePriority journalPilot plantsVolatile fatty acidWaste water managementChemistryChemical oxygen demandUrban wastewaterMethanationMembraneGeneral MedicinePulp and paper industryWaste treatmentHollow fiber reactorWastewaterIndustrial membranesSeparation techniqueMethaneBioconversionEnvironmental EngineeringUltrafiltrationBioreactorBioengineeringArticleWater PurificationBiogasBioreactorMicrofiltrationCitiesEffluentBiological water treatmentTECNOLOGIA DEL MEDIO AMBIENTESubmerged anaerobic membrane bioreactorBiological Oxygen Demand AnalysisMembranesExperimental studyRenewable Energy Sustainability and the EnvironmentEnvironmental engineeringUrban areaMembranes ArtificialBiogas productionNonhumanAnaerobic digestionPilot plantChemical oxygen demandAnoxic conditions
researchProduct

Reliable method for assessing the COD mass balance of a submerged anaerobic membrane bioreactor (SAMBR) treating sulphate-rich municipal wastewater

2012

The anaerobic treatment of sulphate-rich wastewater causes sulphate reducing bacteria (SRB) and methanogenic archaea (MA) to compete for the available substrate. The outcome is lower methane yield coefficient and, therefore, a reduction in the energy recovery potential of the anaerobic treatment. Moreover, in order to assess the overall chemical oxygen demand (COD) balance, it is necessary to determine how much dissolved CH4 is lost in the effluent. The aim of this study is to develop a detailed and reliable method for assessing the COD mass balance and, thereby, to establish a more precise methane yield coefficient for anaerobic systems treating sulphate-rich wastewaters. A submerged anaer…

Environmental EngineeringPilot ProjectsWaste Disposal FluidWater PurificationBioreactorsBiogasBioreactorAnaerobiosisCitiesSulfate-reducing bacteriaEffluentIn Situ Hybridization FluorescenceWater Science and TechnologyBiological Oxygen Demand AnalysisBacteriaSewageSulfatesChemistryChemical oxygen demandEnvironmental engineeringReproducibility of ResultsMembranes ArtificialPulp and paper industryAnaerobic digestionWaste treatmentWastewaterSpainBiofuelsMethaneOxidation-ReductionWater Science and Technology
researchProduct