0000000000346906
AUTHOR
Pasi Jalkanen
Retention of Pb isotopes in glass surfaces for retrospective assessment of radon exposure
Abstract In recent years there has been increasing interest in radio-epidemiological techniques to retrospectively measure the radon dose exposure by determining the activity of 210Pb, the longest-lived 222Rn progeny, in glass surface layers. In this study the diffusion of 39 keV 209Pb+ ions implanted into glass using the IGISOL facility has been studied under conditions that mimic the recoil implantation of 210Pb from 222Rn. The resulting depth distributions of 209Pb were then measured after heat treatment in vacuum at different temperatures by a sputter erosion technique. The diffusion coefficient could be described by an Arrhenius equation D = D0exp(−H/kT) where D 0 = 0.30 - 0.24 + 1.14 …
Properties of SiGe alloys studied by ion beams and suppression of Al film superconductivity by implantation
Critical temperature modification of low dimensional superconductors by spin doping
Ion implantation of Fe and Mn into Al thin films was used for effective modification of Al superconductive properties. Critical temperature of the transition to superconducting state was found to decrease gradually with implanted Fe concentration. it was found that suppression by Mn implantation much stronger compared to Fe. At low concentrations of implanted ions, suppression of the critical temperature can be described with reasonable accuracy by existing models, while at concentrations above 0.1 at.% a pronounced discrepancy between the models and experiments is observed.
Composition dependence ofSi1−xGexsputter yield
Sputtering yields have been measured for unstrained ${\mathrm{Si}}_{1\ensuremath{-}x}{\mathrm{Ge}}_{x}$ $(x=0--1)$ alloys when bombarded with ${\mathrm{Ar}}^{+}$ ions within the linear cascade regime. Nonlinear S-shape dependence of the sputter yield as a function of the alloy composition has been revealed. The dependence is analyzed within the frameworks of the cascade theory conventionally accepted to be the most systematic to date theoretical approach in sputtering. In view of a linear composition dependence predicted for the sputter yield by the cascade theory adapted for polyatomic substrates, the nonlinearity observed in our experiments is shown to be related to the alloying effect on…
Fabrication and characterization of vacuum deposited fluorescein thin films
Simple vacuum evaporation technique for deposition of dyes on various solid surfaces has been developed. The method is compatible with conventional solvent-free nanofabrication processing enabling fabrication of nanoscale optoelectronic devices. Thin films of fluorescein were deposited on glass, fluorine-tin-oxide (FTO) coated glass with and without atomically layer deposited (ALD) nanocrystalline 20 nm thick anatase TiO2 coating. Surface topology, absorption and emission spectra of the films depends on their thickness and the material of supporting substrate. On a smooth glass surface the dye initially formes islands before merging into a uniform layer after 5 to 10 monolayers. On FTO cove…
On erbium lattice location in ion implanted Si0.75Ge0.25 alloy
A high crystalline quality Si0.75Ge0.25 alloy layer grown by chemical vapor deposition was implanted with 70 keV Er+ ions to a fluence of 1015 cm−2 at temperature of 550 °C. The implantation was found to result in an Er depth distribution with 1 at. % maximum concentration 30 nm beneath the surface. The location of the erbium atoms in the host matrix lattice is derived through computer simulation of experimental axial channeling angular scans measured by in situ Rutherford backscattering/channeling spectrometry. Using computer code FLUX 7.7 it is shown that 60% of the implanted erbium atoms are located at ytterbium sites, 10% at tetrahedral sites, and the remainder are associated with rando…
Ion beam shaping and downsizing of nanostructures
We report a new approach for progressive and well-controlled downsizing of nanostructures below the 10 nm scale. Low energetic ion beam (Ar+) is used for gentle surface erosion, progressively shrinking the dimensions with ~ 1 nm accuracy. The method enables shaping of nanostructure geometry and polishing the surface. The process is clean room / high vacuum compatible being suitable for various applications. Apart from technological advantages, the method enables study of various size phenomena on the same sample between sessions of ion beam treatment.
Superconductivity suppression in Fe-implanted thin Al films
At present, ion implantation into metallic systems is given increasing attention, aiming at achieving properties and functionalities of technologically valuable materials not easily available via conventional techniques. In our experiments thin Al films were implanted with Fe ions in order to find out how the superconductive properties of the metal can be modified at will. The purpose was twofold, viz., first, to study the basic physics of superconductivity in low-dimensional metallic structures doped with impurities. The second purpose was to apply ion implantation for the suppression of undesired superconductivity in aluminum widely used for fabrication of micro- and nanodevices operated …