0000000000347359

AUTHOR

E. D. Tymchatyn

showing 3 related works from this author

Homogeneous Suslinian Continua

2011

AbstractA continuumis said to be Suslinian if it does not contain uncountably many mutually exclusive non-degenerate subcontinua. Fitzpatrick and Lelek have shown that a metric Suslinian continuum X has the property that the set of points at which X is connected im kleinen is dense in X. We extend their result to Hausdorff Suslinian continua and obtain a number of corollaries. In particular, we prove that a homogeneous, non-degenerate, Suslinian continuum is a simple closed curve and that each separable, non-degenerate, homogenous, Suslinian continuum is metrizable.

Set (abstract data type)symbols.namesakePure mathematicsProperty (philosophy)Continuum (topology)General MathematicsMetrization theoremMetric (mathematics)symbolsHausdorff spaceJordan curve theoremSeparable spaceMathematicsCanadian Mathematical Bulletin
researchProduct

Lifting paths on quotient spaces

2009

Abstract Let X be a compactum and G an upper semi-continuous decomposition of X such that each element of G is the continuous image of an ordered compactum. If the quotient space X / G is the continuous image of an ordered compactum, under what conditions is X also the continuous image of an ordered compactum? Examples around the (non-metric) Hahn–Mazurkiewicz Theorem show that one must place severe conditions on G if one wishes to obtain positive results. We prove that the compactum X is the image of an ordered compactum when each g ∈ G has 0-dimensional boundary. We also consider the case when G has only countably many non-degenerate elements. These results extend earlier work of the firs…

CombinatoricsDecompositionPure mathematicsImage (category theory)Null familyOrdered continuumBoundary (topology)Geometry and TopologyElement (category theory)Quotient space (linear algebra)QuotientLifting images of arcsMathematicsTopology and its Applications
researchProduct

Continuous images of arcs: Extensions of Cornette's Theorem

2015

In [J.L. Cornette “Image of a Hausdorff arc” is cyclically extensible and reducible Trans. Am. Math. Soc., 199 (1974), pp. 253–267], Cornette proved that a locally connected Hausdorff continuum X is the continuous image of an arc if and only if each of its cyclic elements is the continuous image of an arc. Cyclic elements form a closed null cover of X by retracts of X. We generalize Cornette's result to closed null covers of X with a dendritic structure. We give examples to show that some of our conditions are necessary and we pose some open questions.

Arc (geometry)Discrete mathematicsPure mathematicsCover (topology)Continuum (topology)Images of arcs; Locally connected; Cyclic element; Null familyNull (mathematics)Hausdorff spaceGeometry and TopologyMathematicsImage (mathematics)Topology and Its Applications
researchProduct