0000000000349359
AUTHOR
Christine Bienek
A role for Rho in receptor- and G protein-stimulated phospholipase C Reduction in phosphatidylinositol 4,5-bisphosphate by Clostridium difficile toxin B
Receptors coupled to heterotrimeric guanine nucleotide-binding proteins (G proteins) activate phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-hydrolyzing phospholipase C (PLC) enzymes by activated alpha of free beta gamma subunits of the relevant G proteins. To study whether low molecular weight G proteins of the Rho family are involved in receptor signaling to PLC, we examined the effect of Clostridium difficile toxin B, which glucosylates and thereby inactivates Rho proteins, on the regulation of PLC activity in human embryonic kidney (HEK) cells stably expressing the m3 muscarinic acetylcholine receptor (mAChR) subtype. Toxin B treatment of HEK cells did not affect basal PLC activi…
Inhibition of Receptor Signaling to Phospholipase D by Clostridium difficile Toxin B
Rho proteins have been reported to activate phospholipase D (PLD) in in vitro preparations. To examine the role of Rho proteins in receptor signaling to PLD, we studied the effect of Clostridium difficile toxin B, which glucosylates Rho proteins, on the regulation of PLD activity in human embryonic kidney (HEK) cells stably expressing the m3 muscarinic acetylcholine receptor (mAChR). Toxin B treatment of HEK cells potently and efficiently blocked mAChR-stimulated PLD. In contrast, basal and phorbol ester-stimulated PLD activities were not or only slightly reduced. Cytochalasin B and Clostridium botulinum C2 toxin, mimicking the effect of toxin B on the actin cytoskeleton but without involvi…