Clinical Significance of Rare Copy Number Variations in Epilepsy A Case-Control Survey Using Microarray-Based Comparative Genomic Hybridization
Objective To perform an extensive search for genomic rearrangements by microarray-based comparative genomic hybridization in patients with epilepsy. Design Prospective cohort study. Setting Epilepsy centers in Italy. Patients Two hundred seventy-nine patients with unexplained epilepsy, 265 individuals with nonsyndromic mental retardation but no epilepsy, and 246 healthy control subjects were screened by microarray-based comparative genomic hybridization. Main Outcomes Measures Identification of copy number variations (CNVs) and gene enrichment. Results Rare CNVs occurred in 26 patients (9.3%) and 16 healthy control subjects (6.5%) (P = .26). The CNVs identified in patients were larger (P = …
PRRT2 mutations are the major cause of benign familial infantile seizures.
Mutations in PRRT2 have been described in paroxysmal kinesigenic dyskinesia (PKD) and infantile convulsions with choreoathetosis (PKD with infantile seizures), and recently also in some families with benign familial infantile seizures (BFIS) alone. We analyzed PRRT2 in 49 families and three sporadic cases with BFIS only of Italian, German, Turkish, and Japanese origin and identified the previously described mutation c.649dupC in an unstable series of nine cytosines to occur in 39 of our families and one sporadic case (77% of index cases). Furthermore, three novel mutations were found in three other families, whereas 17% of our index cases did not show PRRT2 mutations, including a large fami…
Lack of SCN1A Mutations in Familial Febrile Seizures
Summary: Purpose: Mutations in the voltage-gated sodium channel subunit gene SCN1A have been associated with febrile seizures (FSs) in autosomal dominant generalized epilepsy with febrile seizures plus (GEFS+) families and severe myoclonic epilepsy of infancy. The present study assessed the role of SCN1A in familial typical FSs. Methods: FS families were selected throughout a collaborative study of the Italian League Against Epilepsy. For each index case, the entire coding region of SCN1A was screened by denaturant high-performance liquid chromatography. DNA fragments showing variant chromatograms were subsequently sequenced. Results: Thirty-two FS families accounting for 91 affected indiv…
Structural mapping of GABRB3 variants reveals genotype-phenotype correlations
AbstractPurposePathogenic variants in GABRB3 have been associated with a spectrum of phenotypes from severe developmental disorders and epileptic encephalopathies to milder epilepsy syndromes and mild intellectual disability. In the present study, we analyzed a large cohort of individuals with GABRB3 variants to deepen the phenotypic understanding and investigate genotype-phenotype correlations.MethodsThrough an international collaboration, we analyzed electro-clinical data of unpublished individuals with variants in GABRB3 and we reviewed previously published cases. All missense variants were mapped onto the 3D structure of the GABRB3 subunit and clinical phenotypes associated with the dif…
Friedreich's Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion
International audience; Friedreich's ataxia (FRDA) is an autosomal recessive, degenerative disease that involves the central and peripheral nervous systems and the heart. A gene, X25, was identified in the critical region for the FRDA locus on chromosome 9q13. This gene encodes a 210-amino acid protein, frataxin, that has homologs in distant species such as Caenorhabditis elegans and yeast. A few FRDA patients were found to have point mutations in X25, but the majority were homozygous for an unstable GAA trinucleotide expansion in the first X25 intron.
A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability
Mutations in the KCNQ2 gene encoding for voltage-gated potassium channel subunits have been found in patients affected with early onset epilepsies with wide phenotypic heterogeneity, ranging from benign familial neonatal seizures (BFNS) to epileptic encephalopathy with cognitive impairment, drug resistance, and characteristic electroencephalography (EEG) and neuroradiologic features. By contrast, only few KCNQ3 mutations have been rarely described, mostly in patients with typical BFNS. We report clinical, genetic, and functional data from a family in which early onset epilepsy and neurocognitive deficits segregated with a novel mutation in KCNQ3 (c.989G>T; p.R330L). Electrophysiological stu…
No evidence of ATP1A2 involvement in 12 multiplex Italian families with benign familial infantile seizures
A missense mutation in the gene encoding the alpha(2) Subunit of the Na+,K+ ATPase pump (ATP1A2) was found in a family with both familial hemiplegic migraine (FHM) and Benign Familial Infantile Seizures (BFIC). As it is still unclear whether ATP1A2 is responsible for pure BFIC syndromes, we checked mutations of the ATP1A2 gene in probands of 12 Italian multiplex families with pure BFIC, who were negative for mutations in the SCN2A gene. We screened the ATP1A2 gene by denaturing high performance liquid chromatography (D-HPLC) and direct sequencing of DNA fragments showing an aberrant elution pattern. We found one exonic variant and five intronic variants, none leading to significant amino ac…
NF1 microdeletion syndrome: case report of two new patients
Abstract Background 17q11.2 microdeletions, which include the neurofibromatosis type 1 (NF1) gene region, are responsible for the NF1 microdeletion syndrome, observed in 4.2% of all NF1 patients. Large deletions of the NF1 gene and its flanking regions are associated with a more severe NF1 phenotype than the NF1 general population. Case presentation We hereby describe the clinical and molecular features of two girls (aged 2 and 4 years, respectively), with non-mosaic atypical deletions. Patient 1 showed fifteen café-au-lait spots and axillary freckling, as well as a Lisch nodule in the left eye, strabismus, high-arched palate, malocclusion, severe kyphoscoliosis, bilateral calcaneovalgus fo…
Clinical and molecular characterization of 112 single-center patients with Neurofibromatosis type 1.
Abstract Background The aim of this retrospective study was to define clinical and molecular characteristics of a large sample of neurofibromatosis type 1 (NF1) patients, as well as to evaluate mutational spectrum and genotype-phenotype correlation. NF1 is a relatively common neurogenetic disorder (1:2500–1:3000 individuals). It is caused by mutations of the NF1 gene on chromosome 17ql1.2, with autosomal dominant pattern of inheritance and wide phenotypical variability. Café-au-lait spots (CALs), cutaneous and/or subcutaneous neurofibromas (CNFs/SCNFs), skinfold freckling, skeletal abnormalities, Lisch nodules of the iris and increased risk of learning and intellectual disabilities, as well…
Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment
VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved resid…
HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond
International audience; Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control neuronal excitability and their dysfunction has been linked to epileptogenesis but few individuals with neurological disorders related to variants altering HCN channels have been reported so far. In 2014, we described five individuals with epileptic encephalopathy due to de novo HCN1 variants. To delineate HCN1-related disorders and investigate genotype-phenotype correlations further, we assembled a cohort of 33 unpublished patients with novel pathogenic or likely pathogenic variants: 19 probands carrying 14 different de novo mutations and four families with dominantly inherited variants segre…
MOESM1 of NF1 microdeletion syndrome: case report of two new patients
Additional file 1. Timelines of the clinical cases.
Linkage analysis and disease models in benign familial infantile seizures: a study of 16 families.
Summary: Purpose: Benign familial infantile seizures (BFIS) is a genetically heterogeneous condition characterized by partial seizures, onset age from 3 to 9 months, and favorable outcome. BFIS loci were identified on chromosomes 19q12-13.1 and 16p12-q12, allelic to infantile convulsions and choreathetosis. The identification of SCN2A mutations in families with only infantile seizures indicated that BFNIS and BFIS may show overlapping clinical features. Infantile seizures also were in a family with familial hemiplegic migraine and mutations in the ATP1A2 gene. We have examined the heterogeneous genetics of BFIS by means of linkage analysis. Methods: Sixteen families were examined. Probands …
Benign myoclonic epilepsy in infancy followed by childhood absence epilepsy
Abstract Benign myoclonic epilepsy in infancy (BMEI) is a rare syndrome included among idiopathic generalized epilepsies (IGE) and syndromes with age-related onset. Recently, it has been shown that a few patients with BMEI later had other epilepsy types mainly IGE but never childhood absence epilepsy (CAE). We report a patient who at 11 months of age showed isolated myoclonic jerks occurring several times a day. The ictal video-EEG and polygraphic recording revealed generalized discharge of spike-wave (SW) lasting 1–2s associated with isolated bilateral synchronous jerk involving mainly the upper limbs controlled by valproic acid (VPA). At 6 years and 8 months the child developed a new elec…