0000000000351689
AUTHOR
Yves Gaillard
Design and development of 100 % bio-based high-grade hemp/epoxy composites
International audience; In order to develop 100% bio-based high-grade epoxy composites, in this study, bio-based epoxy thermosets and hemp slivers are processed and characterized by different technologies. Epoxy resins are synthesized from the diglycidylether of Eugenol, extracted from cloves. They are cured with bio-based acid anhydrides. The physicochemical properties of the resulting epoxy resins are characterized using thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), and nanoindentation. The mechanical properties of hemp fibres extracted from the slivers are also determined using tensile tests. After their processing and characterization, these bio-based consti…
Design and synthesis of biobased epoxy thermosets from biorenewable resources
International audience; Biobased diepoxy synthons derived from isoeugenol, eugenol or resorcinol (DGE-isoEu, DGE-Eu and DGER, respectively) have been used as epoxy monomers in replacement of the diglycidyl ether of bisphenol A (DGEBA). Their curing with six different biobased anhydride hardeners leads to fully biobased epoxy thermosets. These materials exhibit interesting thermal and mechanical properties comparable to those obtained with conventional petrosourced DGEBA-based epoxy resins cured in similar conditions. In particular, a high Tg in the range of 90–130 °C and instantaneous moduli higher than 4.3 GPa have been recorded. These good performances are very encouraging, making these n…
Towards Fully Bio-Based Thermosets: From Prepolymers Synthesis to Composite Applications
International audience
New reactive isoeugenol based phosphate flame retardant : toward green epoxy resins
A biobased reactive phosphate flame retardant derived from isoeugenol was synthesized and fully characterized (1H, 13C, 31P NMR, FTIR, MS) with the aim of improving flame retardancy behavior of bio...