0000000000352245

AUTHOR

Anbu Poosakkannu

0000-0003-2579-150x

Culturable endophytic microbial communities in the circumpolar grass,Deschampsia flexuosain a sub-Arctic inland primary succession are habitat and growth stage specific

Summary Little is known about endophytic microbes in cold climate plants and how their communities are formed. We compared culturable putative endophytic bacteria and fungi in the ecologically important circumpolar grass, Deschampsia flexuosa growing in two successional stages of subarctic sand dune (68°29′N). Sequence analyses of partial 16S rRNA and internal transcribed spacer (ITS) sequences of culturable endophytes showed that diverse bacteria and fungi inhabit different tissues of D. flexuosa. A total of 178 bacterial isolates representing seven taxonomic divisions, Alpha, Beta and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Acidobacteria, and 30 fungal isolates …

research product

Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculat…

research product

Endosphere microbial community assemblage of an inland sand dune colonizing plant

Plant-associated microbes could play a role in plant colonization of sand dune ecosystems, but microbes associated with plants colonizing those ecosystems in the arctic are poorly known. I characterized Deschampsia flexuosa-associated microbiomes in two successional stages (early and late) of arctic inland sand dune differ in their plant species richness and soil physiochemical properties. The work based on culturable microbes showed that different plant parts harbour generalist and specific groups of endosphere microbes and most of the endosphere bacteria were closely related to other cold habitat microbes. Also, most of the endosphere bacteria possessed an important plant growth promoting…

research product

Microbial community composition but not diversity changes along succession in arctic sand dunes

The generality of increasing diversity of fungi and bacteria across arctic sand dune succession was tested. Microbial communities were examined by high-throughput sequencing of 16S rRNA genes (bacteria) and internal transcribed spacer (ITS) regions (fungi). We studied four microbial compartments (inside leaf, inside root, rhizosphere and bulk soil) and characterized microbes associated with a single plant species (Deschampsia flexuosa) across two sand dune successional stages (early and late). Bacterial richness increased across succession in bulk soil and leaf endosphere. In contrast, soil fungal richness remained constant while root endosphere fungal richness increased across succession. …

research product

Fungal community assemblage of different soil compartments in mangrove ecosystem

AbstractThe fungal communities of different soil compartments in mangrove ecosystem are poorly studied. We sequenced the internal transcribed spacer (ITS) regions to characterize the fungal communities in Avicennia marina root-associated soils (rhizosphere and pneumatophore) and bulk soil compartments. The rhizosphere but not pneumatophore soil compartment had significantly lower fungal species richness than bulk soil. However, bulk soil fungal diversity (Shannon diversity index) was significantly higher than both pneumatophore and rhizosphere soil compartments. The different soil compartments significantly affected the fungal community composition. Pairwise sample analyses showed that bulk…

research product

Microbial community composition but not diversity changes along succession in arctic sand dunes

The generality of increasing diversity of fungi and bacteria across arctic sand dune succession was tested. Microbial communities were examined by high-throughput sequencing of 16S rRNA genes (bacteria) and internal transcribed spacer (ITS) regions (fungi). We studied four microbial compartments (inside leaf, inside root, rhizosphere and bulk soil) and characterized microbes associated with a single plant species (Deschampsia flexuosa) across two sand dune successional stages (early and late). Bacterial richness increased across succession in bulk soil and leaf endosphere. In contrast, soil fungal richness remained constant while root endosphere fungal richness increased across succession. …

research product

Reseach data of a dissertation "Endosphere microbial community assemblage of an inland sand dune colonizing plant"

Dataset of a dissertation.

research product