0000000000352390
AUTHOR
Hossein Mirhosseini
First-principles investigation of the bulk and low-index surfaces ofMoSe2
In the framework of density functional theory, the geometry, electronic structure, and magnetic properties of the bulk and low index surfaces of $\mathrm{Mo}{\mathrm{Se}}_{2}$ have been studied. We have carried out calculations with various exchange-correlation functionals to select one which is able to describe the van der Waals (vdW) interactions and gives the best geometry compared with experiments. The inclusion of the vdW forces, however, does not guarantee a reliable description for the geometry of this compound: some vdW functionals strongly overestimate the interlayer distance, similar to GGA functionals. Our investigation shows that the recently introduced optB86b-vdW functional yi…
Incorporation of Li dopant into Cu2ZnSnSe4 photovoltaic absorber: hybrid-functional calculations
We have studied the formation of Li extrinsic defects in CuZnSnSe by first-principles hybrid functional calculations. Li atoms in the Cu site (Li) and Li atoms in the Se site (Li) are the most and the least stable point defect, respectively. The formation energies of two Li interstitial defects with different numbers of nearest neighbors are the same. These interstitial point defects act as a donor but do not create gap states. Formation of the acceptor point defects (Li and Li) is less likely in p-type CuZnSnSe compared with n-type CuZnSnSe. In contrast to Li which does not create gap states, the formation of Li creates two charge transition levels in the middle of the bandgap which might …
Insights into Intrinsic Defects and the Incorporation of Na and K in the Cu2ZnSnSe4 Thin-Film Solar Cell Material from Hybrid-Functional Calculations
We have performed density functional theory calculations using the HSE06 hybrid functional to investigate the energetics, atomic, and electronic structure of intrinsic defects as well as Na and K impurities in the kesterite structure of the Cu2ZnSnSe4 (CZTSe) solar cell material. We found that both Na and K atoms prefer to be incorporated into this material as substitutional defects in the Cu sublattice. At this site highly stable (Na–Na), (K–K), and (Na–K) dumbbells can form. While Na interstitial defects are stable in CZTSe, the formation of K interstitial defects is unlikely. In general, the calculated formation energies for Na-related defects are always lower compared to their K-related…
Hybrid-Functional Calculations on the Incorporation of Na and K Impurities into the CuInSe 2 and CuIn 5 Se 8 Solar-Cell Materials
International audience; We have studied the energetics, atomic, and electronic structure of Na and K point defects, as well as the (Na-Na), (K-K), and (Na-K) dumbbells in CuInSe2 and CuIn5Se8 solar cell materials by hybrid functional calculations. We found that although Na and K behaves somewhat similar; there is a qualitative difference between the inclusion of Na and K impurities. Namely, Na will be mostly incorporated into CuInSe2 and CuIn5Se8 either as an interstitial defect coordinated by cations, or two Na impurities will form (Na-Na) dumbbells in the Cu sublattice. In contrast to Na, K impurities are less likely to form interstitial defects. Instead, it is more preferable to accommod…
Hybrid functional calculations on the Na and K impurities in substitutional and interstitial positions in Cu2ZnSnSe4
We studied the energetics, atomic and electronic structure of Na and K extrinsic defects in Cu2ZnSnSe4 by ab initio calculations using the HSE06 hybrid functional. Our results show that (i) among all substitutional positions, the Cu-site is the most favorable position for both Na and K. (ii) The tetrahedrally coordinated interstitial site has a lower formation energy than the octahedrally coordinated interstitial site. (iii) Based on the band structure calculations we can conclude, Se-related defects lead to the formation of defect states within the band gap.
Reducing the Schottky barrier height at the MoSe2/Mo(110) interface in thin-film solar cells: Insights from first-principles calculations
Abstract We report on first-principles calculations of the properties of the MoSe2/Mo(110) interface. Due to mismatch between the lattice parameters of the two structures, different patterns can form at the interface. We have studied the formation energy and the band alignment of six patterns for the MoSe2 (0001)/Mo(110) interface and one pattern for the MoSe2 (11 2 0)/Mo(110) interface. The MoSe2 (11 2 0)/Mo(110) interface is more stable than the MoSe 2 (0001)/Mo(110) interface and in contrast to MoSe2 (0001)/Mo(110), no Schottky barrier forms at MoSe2 (11 2 0)/Mo(110). Doping with Na modifies the band alignment at the interfaces. The Schottky barrier height decreases, provided that a Na a…