0000000000352593

AUTHOR

Mattia Marconcini

showing 3 related works from this author

Hyperspectral Image Classification with Kernels

2007

The information contained in hyperspectral images allows the characterization, identification, and classification of land covers with improved accuracy and robustness. However, several critical problems should be considered in the classification of hyperspectral images, among which are (a) the high number of spectral channels, (b) the spatial variability of the spectral signature, (c) the high cost of true sample labeling, and (d) the quality of data. Recently, kernel methods have offered excellent results in this context. This chapter reviews the state-of-the-art hyperspectral image classifiers, presents two recently proposed kernel-based approaches, and systematically discusses the specif…

Kernel methodSpectral signaturebusiness.industryComputer scienceHyperspectral image classificationPattern recognitionSpatial variabilityArtificial intelligencebusiness
researchProduct

An Automatic System for the Analysis and Classification of Human Atrial Fibrillation Patterns from Intracardiac Electrograms

2008

This paper presents an automatic system for the analysis and classification of atrial fibrillation (AF) patterns from bipolar intracardiac signals. The system is made up of: 1) a feature- extraction module that defines and extracts a set of measures potentially useful for characterizing AF types on the basis of their degree of organization; 2) a feature-selection module (based on the Jeffries-Matusita distance and a branch and bound search algorithm) identifying the best subset of features for discriminating different AF types; and 3) a support vector machine technique-based classification module that automatically discriminates the AF types according to the Wells' criteria. The automatic s…

Signal processingComputer scienceFeature extractionBiomedical EngineeringFeature extraction and selectionFeature selectionSensitivity and SpecificityIntracardiac injectionPattern Recognition AutomatedArtificial IntelligenceSearch algorithmAtrial FibrillationmedicineHumansDiagnosis Computer-AssistedIntracardiac ElectrogramArrhythmia organizationSignal processingmedicine.diagnostic_testbusiness.industrySupport vector machines (SVMs)Reproducibility of ResultsPattern recognitionAtrial fibrillationHuman atrial fibrillationmedicine.diseaseSupport vector machineSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaAutomatic classificationArtificial intelligenceIntracardiac electrogrambusinessElectrocardiographyAlgorithmsIEEE Transactions on Biomedical Engineering
researchProduct

Recent Advances in Techniques for Hyperspectral Image Processing

2009

International audience; Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than thirty years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspec- tral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the high-dimensional nature of the data, and to integrate the spa- tial and spectral information. Performance of the discussed techniques is evaluated in …

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesSoil ScienceImage processing02 engineering and technologyMachine learningcomputer.software_genre01 natural sciences[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingComputer visionComputers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingData processingContextual image classificationbusiness.industryHyperspectral imagingGeologyImaging spectroscopyInformation extractionKernel methodSnapshot (computer storage)Artificial intelligencebusinesscomputer[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct