0000000000353110

AUTHOR

Thomas Klimach

The ACRIDICON-CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO

Abstract Between 1 September and 4 October 2014, a combined airborne and ground-based measurement campaign was conducted to study tropical deep convective clouds over the Brazilian Amazon rain forest. The new German research aircraft, High Altitude and Long Range Research Aircraft (HALO), a modified Gulfstream G550, and extensive ground-based instrumentation were deployed in and near Manaus (State of Amazonas). The campaign was part of the German–Brazilian Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitatio…

research product

Application of an O-ring pinch device as a constant-pressure inlet (CPI) for airborne sampling

We present a novel and compact design of a constant-pressure inlet (CPI) developed for use in airborne aerosol mass spectrometry. In particular, the inlet system is optimized for aerodynamic lenses commonly used in aerosol mass spectrometers, in which efficient focusing of aerosol particles into a vacuum chamber requires a precisely controlled lens pressure, typically of a few hectopascals. The CPI device can also be used in condensation particle counters (CPCs), cloud condensation nucleus counters (CCNCs), and gas-phase sampling instruments across a wide range of altitudes and inlet pressures. The constant pressure is achieved by changing the inner diameter of a properly scaled O-ring that…

research product

Gel Electrophoresis Coupled to Inductively Coupled Plasma−Mass Spectrometry Using Species-Specific Isotope Dilution for Iodide and Iodate Determination in Aerosols

In this paper, we present an online coupling of gel electrophoresis (GE) and inductively coupled plasma-mass spectrometry (ICP-MS) for the determination of iodine species (iodide and iodate) in liquid (seawater) and aerosol samples. For the first time, this approach is applied to the analysis of small molecules, and initial systematic investigations revealed that the migration behavior as well as the detection sensitivity strongly depends on the matrix (e.g., high concentrations of chloride). These effects could consequently affect the accuracy of analytical results, so that they need to be considered for the analysis of real samples. The technique used for quantification is species-specifi…

research product

ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO

Abstract The Midlatitude Cirrus experiment (ML-CIRRUS) deployed the High Altitude and Long Range Research Aircraft (HALO) to obtain new insights into nucleation, life cycle, and climate impact of natural cirrus and aircraft-induced contrail cirrus. Direct observations of cirrus properties and their variability are still incomplete, currently limiting our understanding of the clouds’ impact on climate. Also, dynamical effects on clouds and feedbacks are not adequately represented in today’s weather prediction models. Here, we present the rationale, objectives, and selected scientific highlights of ML-CIRRUS using the G-550 aircraft of the German atmospheric science community. The first combi…

research product

Comparing calculated microphysical properties of tropical convective clouds at cloud base with measurements during the ACRIDICON-CHUVA campaign

Abstract. Reliable aircraft measurements of cloud microphysical properties are essential for understanding liquid convective cloud formation. In September 2014, the properties of convective clouds were measured with a Cloud Combination Probe (CCP), a Cloud and Aerosol Spectrometer (CAS-DPOL), and a cloud condensation nuclei (CCN) counter on board the HALO (High Altitude and Long Range Research Aircraft) aircraft during the ACRIDICON-CHUVA campaign over the Amazon region. An intercomparison of the cloud drop size distributions (DSDs) and the cloud water content derived from the different instruments generally shows good agreement within the instrumental uncertainties. The objective of this s…

research product

Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6)

Abstract. Two different single particle mass spectrometers were operated in parallel at the Swiss High Alpine Research Station Jungfraujoch (JFJ, 3580 m a.s.l.) during the Cloud and Aerosol Characterization Experiment (CLACE 6) in February and March 2007. During mixed phase cloud events ice crystals from 5–20 μm were separated from larger ice aggregates, non-activated, interstitial aerosol particles and supercooled droplets using an Ice-Counterflow Virtual Impactor (Ice-CVI). During one cloud period supercooled droplets were additionally sampled and analyzed by changing the Ice-CVI setup. The small ice particles and droplets were evaporated by injection into dry air inside the Ice-CVI. The …

research product

Comparing parameterized versus measured microphysical properties of tropical convective cloud bases during the ACRIDICON–CHUVA campaign

The objective of this study is to validate parameterizations that were recently developed for satellite retrievals of cloud condensation nuclei supersaturation spectra, NCCN(S), at cloud base alongside more traditional parameterizations connecting NCCN(S) with cloud base updrafts and drop concentrations. This was based on the HALO aircraft measurements during the ACRIDICON–CHUVA campaign over the Amazon region, which took place in September 2014. The properties of convective clouds were measured with a cloud combination probe (CCP), a cloud and aerosol spectrometer (CAS-DPOL), and a CCN counter onboard the HALO aircraft. An intercomparison of the cloud drop size distributions (DSDs) and the…

research product

Aircraft-based observation of meteoric material in lower-stratospheric aerosol particles between 15 and 68° N

We analyse aerosol particle composition measurements from five research missions between 2014 and 2018 to assess the meridional extent of particles containing meteoric material in the upper troposphere and lower stratosphere (UTLS). Measurements from the Jungfraujoch mountaintop site and a low-altitude aircraft mission show that meteoric material is also present within middle- and lower-tropospheric aerosol but within only a very small proportion of particles. For both the UTLS campaigns and the lower- and mid-troposphere observations, the measurements were conducted with single-particle laser ablation mass spectrometers with bipolar-ion detection, which enabled us to measure the chemical c…

research product

Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere

Abstract. Size-resolved and vertical profile measurements of single particle chemical composition (sampling altitude range 50–3000 m) were conducted in July 2014 in the Canadian high Arctic during the aircraft-based measurement campaign NETCARE 2014. We deployed the single particle laser ablation aerosol mass spectrometer ALABAMA (vacuum aerodynamic diameter range approximately 200–1000 nm) to identify different particle types and their mixing states. On basis of the single particle analysis, we found that a significant fraction (23 %) of all analyzed particles (in total: 7412) contained trimethylamine (TMA). The identification of TMA in ambient mass spectra was confirmed by laboratory meas…

research product

Calibration of an airborne HO<sub><i>x</i></sub> instrument using the All Pressure Altitude-based Calibrator for HO<sub><i>x</i></sub> Experimentation (APACHE)

Abstract. Laser-induced fluorescence (LIF) is a widely used technique for both laboratory-based and ambient atmospheric chemistry measurements. However, LIF instruments require calibrations in order to translate instrument response into concentrations of chemical species. Calibration of LIF instruments measuring OH and HO2 ( HOx ) typically involves the photolysis of water vapor by 184.9 nm light, thereby producing quantitative amounts of OH and HO2 . For ground-based HOx instruments, this method of calibration is done at one pressure (typically ambient pressure) at the instrument inlet. However, airborne HOx instruments can experience varying cell pressures, internal residence times, tempe…

research product

Optimizing the detection, ablation, and ion extraction efficiency of a single-particle laser ablation mass spectrometer for application in environments with low aerosol particle concentrations

The aim of this study is to show how a newly developed aerodynamic lens system (ALS), a delayed ion extraction (DIE), and better electric shielding improve the efficiency of the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA). These improvements are applicable to single-particle laser ablation mass spectrometers in general. To characterize the modifications, extensive size-resolved measurements with spherical polystyrene latex particles (PSL; 150–6000 nm) and cubic sodium chloride particles (NaCl; 400–1700 nm) were performed. Measurements at a fixed ALS position show an improved detectable particle size range of the new ALS compared to the previously used Liu…

research product

The challenge of simulating the sensitivity of the Amazonian clouds microstructure to cloud condensation nuclei number concentrations

The realistic representation of cloud-aerosol interactions is of primary importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions in the Amazon area has been one of the motivations for several field observations, including the airborne Aerosol, Cloud, Precipitation, and Radiation Interactions and DynamIcs of CONvective cloud systems – Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON-CHUVA) campaign based in Manaus, Brazil in September 2014. In this work we combine in situ …

research product

Aerosol Chemistry Resolved by Mass Spectrometry: Insights into Particle Growth after Ambient New Particle Formation

Atmospheric oxidation of volatile organic compounds (VOCs) yields a large number of different organic molecules which comprise a wide range of volatility. Depending on their volatility, they can be involved in new particle formation and particle growth, thus affecting the number concentration of cloud condensation nuclei in the atmosphere. Here, we identified oxidation products of VOCs in the particle phase during a field study at a rural mountaintop station in central Germany. We used atmospheric pressure chemical ionization mass spectrometry ((-)APCI-MS) and aerosol mass spectrometry for time-resolved measurements of organic species and of the total organic aerosol (OA) mass in the size r…

research product

High-Resolution Fluorescence Spectra of Airborne Biogenic Secondary Organic Aerosols: Comparisons to Primary Biological Aerosol Particles and Implications for Single-Particle Measurements.

Aqueous extracts of biogenic secondary organic aerosols (BSOAs) have been found to exhibit fluorescence that may interfere with the laser/light-induced fluorescence (LIF) detection of primary biological aerosol particles (PBAPs). In this study, we quantified the interference of BSOAs to PBAPs by directly measuring airborne BSOA particles, rather than aqueous extracts. BSOAs were generated by the reaction of d-limonene (LIM) or α-pinene (PIN) and ozone (O3) with or without ammonia in a chamber under controlled conditions. With an excitation wavelength of 355 nm, BSOAs exhibited peak emissions at 464–475 nm, while fungal spores exhibited peak emissions at 460–483 nm; the fluorescence intensit…

research product

Application of an O-ring pinch device as a constant pressure inlet (CPI) for airborne sampling

Abstract. We present a novel and compact design of a constant pressure inlet (CPI) developed for use in airborne aerosol mass spectrometry. In particular the inlet system is optimized for aerodynamic lenses commonly used in aerosol mass spectrometers, where efficient focusing of aerosol particles into a vacuum chamber requires a precisely controlled lens pressure, typically of a few hPa. The CPI device can also be used in gas phase sampling instruments in a large range of altitude and inlet pressure. The constant pressure is achieved by changing the inner diameter of a properly scaled O-ring that acts as a critical orifice. The CPI control keeps air pressure and thereby mass flow rate (≈ 0.…

research product

Aircraft-based observation of meteoric material in lower stratospheric aerosol particles between 15 and 68° N

Abstract. In this paper we analyze aerosol particle composition measurements from five research missions conducted between 2014 and 2018 sampling the upper troposphere and lower stratosphere (UTLS), to assess the meridional extent of particles containing meteoric material. Additional data sets from a ground based study and from a low altitude aircraft mission are used to confirm the existence of meteoric material in lower tropospheric particles. Single particle laser ablation techniques with bipolar ion detection were used to measure the chemical composition of particles in a size range of approximately 150 nm to 3 μm. The five UTLS aircraft missions cover a latitude range from 15 to 68° N,…

research product

Design, characterization, and first field deployment of a novel aircraft-based aerosol mass spectrometer combining the laser ablation and flash vaporization techniques

In this paper, we present the design, development, and characteristics of the novel aerosol mass spectrometer ERICA (ERC Instrument for Chemical composition of Aerosols; ERC – European Research Council) and selected results from the first airborne field deployment. The instrument combines two well-established methods of real-time in situ measurements of fine particle chemical composition. The first method is the laser desorption and ionization technique, or laser ablation technique, for single-particle mass spectrometry (here with a frequency-quadrupled Nd:YAG laser at λ = 266 nm). The second method is a combination of thermal particle desorption, also called flash vaporization, and electro…

research product

Chemical composition and source attribution of sub-micrometre aerosol particles in the summertime Arctic lower troposphere

Aerosol particles impact the Arctic climate system both directly and indirectly by modifying cloud properties, yet our understanding of their vertical distribution, chemical composition, mixing state, and sources in the summertime Arctic is incomplete. In situ vertical observations of particle properties in the high Arctic combined with modelling analysis on source attribution are in short supply, particularly during summer. We thus use airborne measurements of aerosol particle composition to demonstrate the strong contrast between particle sources and composition within and above the summertime Arctic boundary layer. In situ measurements from two complementary aerosol mass spectrometers, t…

research product

Application of an O-ring pinch device as a constant-pressure inlet (CPI) for airborne sampling

We present a novel and compact design of a constant-pressure inlet (CPI) developed for use in airborne aerosol mass spectrometry. In particular, the inlet system is optimized for aerodynamic lenses commonly used in aerosol mass spectrometers, in which efficient focusing of aerosol particles into a vacuum chamber requires a precisely controlled lens pressure, typically of a few hectopascals. The CPI device can also be used in condensation particle counters (CPCs), cloud condensation nucleus counters (CCNCs), and gas-phase sampling instruments across a wide range of altitudes and inlet pressures. The constant pressure is achieved by changing the inner diameter of a properly scaled O-ring that…

research product

Application of an O-ring pinch device as a constant pressure inlet (CPI) for airborne sampling

We present a novel and compact design of a constant pressure inlet (CPI) developed for use in airborne aerosol mass spectrometry. In particular the inlet system is optimized for aerodynamic lenses commonly used in aerosol mass spectrometers, where efficient focusing of aerosol particles into a vacuum chamber requires a precisely controlled lens pressure, typically of a few hPa. The CPI device can also be used in gas phase sampling instruments in a large range of altitude and inlet pressure. The constant pressure is achieved by changing the inner diameter of a properly scaled O-ring that acts as a critical orifice. The CPI control keeps air pressure and thereby mass flow rate (≈&thinsp…

research product

Aircraft-based observation of meteoric material in lower stratospheric aerosol particles between 15 and 68° N

In this paper we analyze aerosol particle composition measurements from five research missions conducted between 2014 and 2018 sampling the upper troposphere and lower stratosphere (UTLS), to assess the meridional extent of particles containing meteoric material. Additional data sets from a ground based study and from a low altitude aircraft mission are used to confirm the existence of meteoric material in lower tropospheric particles. Single particle laser ablation techniques with bipolar ion detection were used to measure the chemical composition of particles in a size range of approximately 150 nm to 3 μm. The five UTLS aircraft missions cover a latitude range from 15 to 68…

research product