0000000000353539
AUTHOR
Mauro Satta
Exploiting Reaction-Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF.
Coordination polymers (CPs), including metal–organic frameworks (MOFs), are crystalline materials with promising applications in electronics, magnetism, catalysis, and gas storage/separation. However, the mechanisms and pathways underlying their formation remain largely undisclosed. Herein, we demonstrate that diffusion-controlled mixing of reagents at the very early stages of the crystallization process (i.e., within ≈40 ms), achieved by using continuous-flow microfluidic devices, can be used to enable novel crystallization pathways of a prototypical spin-crossover MOF towards its thermodynamic product. In particular, two distinct and unprecedented nucleation-growth pathways were experimen…
Inside Cover: Exploiting Reaction‐Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF (Angew. Chem. Int. Ed. 29/2021)
Innentitelbild: Exploiting Reaction‐Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF (Angew. Chem. 29/2021)
Inside Cover: Exploiting Reaction-Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF
How do you unveil pathway complexity in a crystallization process? In their Research Article on page 15920, Alessandro Sorrenti, Marco D′Abramo, Guillermo Mínguez Espallargas, Josep Puigmartí-Luis, and co-workers show that harnessing a reaction-diffusion (RD) process within a continuous flow microfluidic device, and on a millisecond timescale, is key to enable two unprecedented nucleation-growth pathways during a MOF synthesis.