0000000000353595

AUTHOR

Jens-uwe Grabow

0000-0002-2663-8091

Unveiling the Sulfur–Sulfur Bridge: Accurate Structural and Energetic Characterization of a Homochalcogen Intermolecular Bond

open 12 si MIUR “PRIN 2015” funds (Grant Number 2015F59J3R) By combining rotational spectroscopy in supersonic expansion with the capability of state-of-the-art quantum-chemical computations in accurately determining structural and energetic properties, the genuine nature of a sulfur–sulfur chalcogen bond between dimethyl sulfide and sulfur dioxide has been unveiled in a gas-jet environment free from collision, solvent and matrix perturbations. A SAPT analysis pointed out that electrostatic S⋅⋅⋅S interactions play the dominant role in determining the stability of the complex, largely overcoming dispersion and C−H⋅⋅⋅O hydrogen-bond contributions. Indeed, in agreement with the analysis of the…

research product

Rotational spectra and hyperfine structure of isotopic species of deuterated cyanoacetylene, DC3N

Abstract Cyanoacetylene enriched in deuterium was used to record pure rotational transitions of DC 3 N and its rare 13 C and 15 N isotopic species by employing Fourier transform microwave (FTMW) spectroscopy on a supersonic-jet expansion at centimeter wavelengths (8.2–25.4 GHz) and by using long-path absorption spectroscopy at millimeter and submillimeter wavelengths (82–900 GHz). In addition, submillimeter wave measurements (304–897 GHz) have been performed for DC 3 N in its v 7 = 1 lowest excited vibrational state. Hyperfine structure caused by the 14 N and D nuclei has been resolved in the FTMW spectra. Quantum-chemical calculations have been performed on the hyperfine structure paramete…

research product

Determination of accurate rest frequencies and hyperfine structure parameters of cyanobutadiyne, HC5N

Very accurate transition frequencies of HC$_5$N were determined between 5.3 and 21.4 GHz with a Fourier transform microwave spectrometer. The molecules were generated by passing a mixture of HC$_3$N and C$_2$H$_2$ highly diluted in neon through a discharge valve followed by supersonic expansion into the Fabry-Perot cavity of the spectrometer. The accuracies of the data permitted us to improve the experimental $^{14}$N nuclear quadrupole coupling parameter considerably and the first experimental determination of the $^{14}$N nuclear spin-rotation parameter. The transition frequencies are also well suited to determine in astronomical observations the local speed of rest velocities in molecula…

research product