Synthesis of a labile sulfur-centred ligand, [S(H)C(PPh2S)2]−: structural diversity in lithium(i), zinc(ii) and nickel(ii) complexes
A high-yield synthesis of [Li{S(H)C(PPh2S)2}]2 [Li2·(3)2] was developed and this reagent was used in metathesis with ZnCl2 and NiCl2 to produce homoleptic complexes 4 and 5b in 85 and 93% yields, respectively. The solid-state structure of the octahedral complex [Zn{S(H)C(PPh2S)2}2] (4) reveals notable inequivalence between the Zn-S(C) and Zn-S(P) contacts (2.274(1) Å vs. 2.842(1) and 2.884(1) Å, respectively). Two structural isomers of the homoleptic complex [Ni{S(H)C(PPh2S)2}2] were isolated after prolonged crystallization processes. The octahedral green Ni(ii) isomer 5a exhibits the two monoprotonated ligands bonded in a tridentate (S,S',S'') mode to the Ni(ii) centre with three distinctl…
Synthesis of a labile sulfur-centred ligand, [S(H)C(PPh2S)2]-: structural diversity in lithium(i), zinc(ii) and nickel(ii) complexes
A high-yield synthesis of [Li{S(H)C(PPh2S)2}]2 [Li2·(3)2] was developed and this reagent was used in metathesis with ZnCl2 and NiCl2 to produce homoleptic complexes 4 and 5b in 85 and 93% yields, respectively. The solid-state structure of the octahedral complex [Zn{S(H)C(PPh2S)2}2] (4) reveals notable inequivalence between the Zn–S(C) and Zn–S(P) contacts (2.274(1) Å vs. 2.842(1) and 2.884(1) Å, respectively). Two structural isomers of the homoleptic complex [Ni{S(H)C(PPh2S)2}2] were isolated after prolonged crystallization processes. The octahedral green Ni(II) isomer 5a exhibits the two monoprotonated ligands bonded in a tridentate (S,S′,S′′) mode to the Ni(II) centre with three distinctl…
PCP-bridged chalcogen-centred anions: coordination chemistry and carbon-based reactivity.
Since the discovery of the stabilising influence of thiophosphinoyl groups in methanediides by Le Floch et al. (Angew. Chem. Int. Ed., 2004, 43, 6382), numerous transition metal, lanthanide and actinide complexes of bis(thiophosphinoyl) carbene ligands have been investigated with an emphasis on the electronic structure and reactivity of the metal–carbon bonds. This Perspective begins by discussing main group (s- and p-block) complexes of this ligand and draws attention to differences compared to their d and f-block analogues. Investigations targeting the heavy chalcogen analogues of the Le Floch ligand have revealed an unusual carbon-based reactivity that led to the discovery of novel multi…
CCDC 1424396: Experimental Crystal Structure Determination
Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J
CCDC 1424395: Experimental Crystal Structure Determination
Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J
CCDC 1486829: Experimental Crystal Structure Determination
Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J
CCDC 1424394: Experimental Crystal Structure Determination
Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J