0000000000353766

AUTHOR

Veronica Vinciotti

showing 8 related works from this author

Extending graphical models for applications: on covariates, missingness and normality

2021

The authors of the paper “Bayesian Graphical Models for Modern Biological Applications” have put forward an important framework for making graphical models more useful in applied settings. In this discussion paper, we give a number of suggestions for making this framework even more suitable for practical scenarios. Firstly, we show that an alternative and simplified definition of covariate might make the framework more manageable in high-dimensional settings. Secondly, we point out that the inclusion of missing variables is important for practical data analysis. Finally, we comment on the effect that the Gaussianity assumption has in identifying the underlying conditional independence graph…

Statistics and ProbabilityComputer sciencemedia_common.quotation_subjectMissing dataConditional graphical modelsCopula graphical modelsMissing dataCovariateEconometricsSparse inferenceGraphical modelStatistics Probability and UncertaintyNormalitymedia_common
researchProduct

The Joint Censored Gaussian Graphical Lasso Model

2022

The Gaussian graphical model is one of the most used tools for inferring genetic networks. Nowadays, the data are often collected from different sources or under different biological conditions, resulting in heterogeneous datasets that exhibit a dependency structure that varies across groups. The complex structure of these data is typically recovered using regularized inferential procedures that use two penalties, one that encourages sparsity within each graph and the other that encourages common structures among the different groups. To this date, these approaches have not been developed for handling the case of censored data. However, these data are often generated by gene expression tech…

GaussianGraphicalModels High-Dimensional Incomplete Data Graphical Lasso Heterogeneous DataSettore SECS-S/01 - Statistica
researchProduct

L1-Penalized Censored Gaussian Graphical Model

2018

Graphical lasso is one of the most used estimators for inferring genetic networks. Despite its diffusion, there are several fields in applied research where the limits of detection of modern measurement technologies make the use of this estimator theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is satisfied. Typical examples are data generated by polymerase chain reactions and flow cytometer. The combination of censoring and high-dimensionality make inference of the underlying genetic networks from these data very challenging. In this article, we propose an $\ell_1$-penalized Gaussian graphical model for censored data and derive two EM-like algorithm…

0301 basic medicineStatistics and ProbabilityFOS: Computer and information sciencesgraphical lassoComputer scienceGaussianNormal DistributionInferenceMultivariate normal distribution01 natural sciencesMethodology (stat.ME)010104 statistics & probability03 medical and health sciencessymbols.namesakeGraphical LassoExpectation–maximization algorithmHumansComputer SimulationGene Regulatory NetworksGraphical model0101 mathematicsStatistics - MethodologyEstimation theoryReverse Transcriptase Polymerase Chain ReactionEstimatorexpectation-maximization algorithmGeneral MedicineCensoring (statistics)High-dimensional datahigh-dimensional dataGaussian graphical model030104 developmental biologysymbolscensored dataCensored dataExpectation-Maximization algorithmStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaAlgorithmAlgorithms
researchProduct

An extension of the censored gaussian lasso estimator

2019

The conditional glasso is one of the most used estimators for inferring genetic networks. Despite its diffusion, there are several fields in applied research where the limits of detection of modern measurement technologies make the use of this estimator theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is satisfied. In this paper we propose an extension to censored data.

Censored data Censored glasso estimator Gaussian graphical model glasso estimator.Settore SECS-S/01 - Statistica
researchProduct

The conditional censored graphical lasso estimator

2020

© 2020, Springer Science+Business Media, LLC, part of Springer Nature. In many applied fields, such as genomics, different types of data are collected on the same system, and it is not uncommon that some of these datasets are subject to censoring as a result of the measurement technologies used, such as data generated by polymerase chain reactions and flow cytometer. When the overall objective is that of network inference, at possibly different levels of a system, information coming from different sources and/or different steps of the analysis can be integrated into one model with the use of conditional graphical models. In this paper, we develop a doubly penalized inferential procedure for…

Statistics and ProbabilityFOS: Computer and information sciencesComputer scienceGaussianInferenceData typeTheoretical Computer Sciencehigh-dimensional settingDatabase normalizationMethodology (stat.ME)symbols.namesakeLasso (statistics)Graphical modelConditional Gaussian graphical modelcensored graphical lassoStatistics - MethodologyHigh-dimensional settingconditional Gaussian graphical modelssparsityEstimatorCensoring (statistics)Censored graphical lassoComputational Theory and MathematicssymbolsCensored dataStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaSparsityAlgorithm
researchProduct

Covariate adjusted censored gaussian lasso estimator

2021

The covariate adjusted glasso is one of the most used estimators for in- ferring genetic networks. Despite its diffusion, there are several fields in applied research where the limits of detection of modern measurement technologies make the use of this estimator theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is satisfied. In this paper we propose an extension to censored data.

Gaussian graphical modelCensored dataglasso estimatorCensored glasso estimatorSettore SECS-S/01 - Statistica
researchProduct

Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks.

2016

Abstract Factorial Gaussian graphical Models (fGGMs) have recently been proposed for inferring dynamic gene regulatory networks from genomic high-throughput data. In the search for true regulatory relationships amongst the vast space of possible networks, these models allow the imposition of certain restrictions on the dynamic nature of these relationships, such as Markov dependencies of low order – some entries of the precision matrix are a priori zeros – or equal dependency strengths across time lags – some entries of the precision matrix are assumed to be equal. The precision matrix is then estimated by l 1-penalized maximum likelihood, imposing a further constraint on the absolute value…

0301 basic medicineStatistics and ProbabilityFactorialDependency (UML)Computer scienceGaussianNormal Distributionpenalized inferencesparse networkscomputer.software_genreMachine learning01 natural sciencesNormal distribution010104 statistics & probability03 medical and health sciencessymbols.namesakeSparse networksGeneticsComputer SimulationGene Regulatory NetworksGraphical model0101 mathematicsgene-regulatory systemMolecular BiologyProbabilityMarkov chainModels GeneticPenalized inferencebusiness.industryModel selectiongraphical modelGene-regulatory systemsComputational Mathematics030104 developmental biologysymbolsA priori and a posterioriData miningArtificial intelligenceGraphical modelsSettore SECS-S/01 - StatisticabusinesscomputerNeisseriaAlgorithmsStatistical applications in genetics and molecular biology
researchProduct

cglasso: An R Package for Conditional Graphical Lasso Inference with Censored and Missing Values

2023

Sparse graphical models have revolutionized multivariate inference. With the advent of high-dimensional multivariate data in many applied fields, these methods are able to detect a much lower-dimensional structure, often represented via a sparse conditional independence graph. There have been numerous extensions of such methods in the past decade. Many practical applications have additional covariates or suffer from missing or censored data. Despite the development of these extensions of sparse inference methods for graphical models, there have been so far no implementations for, e.g., conditional graphical models. Here we present the general-purpose package cglasso for estimating sparse co…

Statistics and Probabilityconditional Gaussian graphical modelscglasso conditional Gaussian graphical models glasso high-dimensionality sparsity censoring missing dataglassosparsityhigh-dimensionalityconditional Gaussian graphical models glasso high-dimensionality sparsity censoring missing datacglassomissing datacensoringStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaSoftware
researchProduct