0000000000354114

AUTHOR

Leon Lefferts

0000-0003-2377-5282

showing 4 related works from this author

Adsorption and Activation of Water on Cuboctahedral Rhodium and Platinum Nanoparticles

2017

Rh and Pt are widely used as the components in heterogeneous catalysts for multiple industrial applications. Because the metals are typically in the form of nanoparticles in real catalysts, it is important to carefully select models for the computational prediction of the catalytic properties. Here we report a first-principles study on the water activation, an important step in numerous catalytic reactions, using the finite-size Rh and Pt nanoparticle models and compare them to the extended surface models. We show that regardless of the model, adsorption and activation of water is practically identical for both metals, whereas the dissociation is energetically more favorable on Rh. The expe…

ta221Inorganic chemistryOxidemetalsNanoparticlechemistry.chemical_element02 engineering and technology010402 general chemistryPlatinum nanoparticles01 natural sciencesDissociation (chemistry)catalytic reactionsRhodiumCatalysisMetalchemistry.chemical_compoundAdsorptionplatinummetal nanoparticlesmetallitPhysical and Theoretical Chemistrywater activationta116ta114Chemistry021001 nanoscience & nanotechnologycatalytic properties0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral Energyadsorptionkatalyysivisual_artvisual_art.visual_art_mediumnanoparticlesnanohiukkasetadsorptio0210 nano-technologyThe Journal of Physical Chemistry C
researchProduct

Review: monoclinic zirconia, its surface sites and their interaction with carbon monoxide

2015

This review concerns monoclinic zirconia, its surface sites and their probing with carbon monoxide. The surface sites and their modifications using thermal treatments with vacuum or reactive gases are also included. In this work, we present information on the nature and manipulation of hydroxyl species and their quantities on the surface, the different types of cationic sites where CO is adsorbed linearly and their energetics, as well as the surface sites and dynamics of formate formation. We also compare the surface concentrations of the different surface species to better understand the extent and nature of the interactions. Finally, we discuss some of the remaining open questions and how…

Inorganic chemistryEnergeticsCationic polymerizationsurface sitesCatalysisCatalysischemistry.chemical_compoundAdsorptionchemistrymonoclinic zirconiaThermalIR-96084METIS-310721Cubic zirconiaCarbon monoxideMonoclinic crystal systemCatalysis science & technology
researchProduct

In situ ATR-IR studies in aqueous phase reforming of hydroxyacetone on Pt/ZrO2 and Pt/AlO(OH) catalysts: The role of aldol condensation

2018

Abstract In situ Attenuated Total Reflection Infrared (ATR-IR) spectroscopy was used to study Aqueous Phase Reforming of hydroxyacetone on Pt/AlO(OH) and Pt/ZrO2 catalysts at 230 °C/ 30 bar. Formation of strongly adsorbed aldol condensation products was observed on the surface of Pt/ZrO2 and ZrO2 in contrast to Pt/AlO(OH) and AlO(OH). Peak assignments were supported by DFT calculations of the IR spectra of the condensation products in vacuum and in the presence of water. Aldol condensation of hydroxyacetone leading to compounds with high molecular weight with unsaturated bonds was suggested as a first step in coke formation. Carbonaceous deposits on the surface of the ZrO2 support are oxyge…

UT-Hybrid-DInfrared spectroscopyAqueous phase reforming02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesCatalysisCatalysiIn situLiquid phaseCatalysischemistry.chemical_compoundAdsorptionGeneral Environmental ScienceATR-IR spectroscopy2300Process Chemistry and TechnologyHydroxyacetoneCondensationAqueous two-phase system021001 nanoscience & nanotechnology0104 chemical sciencesAldol condensationchemistryAttenuated total reflectionAldol condensation0210 nano-technologyApplied Catalysis B: Environmental
researchProduct

ZrO2 Acting as a Redox Catalyst

2016

Surface defects are discussed and reviewed with regards to the use of ZrO2 in applications involving interactions with CO, H2, CH4, CO2, water and hydrocarbons. Studies of catalytic partial oxidation of methane reveal that part of the surface lattice oxygen in terraces can be removed by methane at high temperatures (e.g. 900 °C). The reaction proceeds via a surface confined redox mechanism. The studies presented here also highlight that defects play a decisive role in the water–gas-shift reaction, since the reaction is likely carried out via OH groups present at defect sites, which are regenerated by dissociating water. Hydroxyl chemistry on ZrO2 is briefly reviewed related to the studies p…

Chemistry(all)Tar oxidationInorganic chemistryHydroxyl groups02 engineering and technology010402 general chemistry01 natural sciencesRedoxCatalysisMethaneDissociation (chemistry)CatalysisRedoxHSchemistry.chemical_compoundAdsorptionZrO2Partial oxidationbiologyH2SCPOMActive siteGeneral ChemistryZrO021001 nanoscience & nanotechnology0104 chemical scienceschemistrybiology.proteinDensity functional theory0210 nano-technologyWGSTopics in Catalysis
researchProduct