The pore structure of compacted and partly saturated MX-80 bentonite at different dry densities
Compacted MX-80 bentonite is a potential backfill material in radioactive-waste repositories. Pore space in MX-80 has been the subject of considerable debate. 3D reconstructions of the pore space based on tomographic methods could provide new insights into the nature of the pore space of compacted bentonites. To date, few such reconstructions have been done because of problems with the preparation of bentonite samples for electron microscopy. The nanoscale intergranular pore space was investigated here by cryo-Focused Ion Beam nanotomography (FIB-nt) applied to previously high-pressure frozen MX-80 bentonite samples. This approach allowed a tomographic investigation of the in situ microstru…
Shot-clay MX-80 bentonite: An assessment of the hydro-mechanical behaviour
This study presents the results of an experimental study conducted to characterise the hydro-mechanical behaviour of shot-clay MX-80 bentonite. In the shot-clay process, granular bentonite was mixed continuously with water and shot on the walls of a tunnel section at the Grimsel Underground Research Laboratory (URL), in Switzerland. The shot-clay was placed to create a layer of bentonite in direct contact with the host rock to avoid preferential water and/or gas flow along the tunnel wall. Samples for an experimental programme were collected during the shooting. The index properties, microstructural features, swelling potential and water retention properties of the shot-clay were analysed. …
Hydro-mechanical behaviour of shot-clay bentonite
Experimental tests were conducted to characterise the hydro-mechanical behaviour of shot-clay MX-80 bentonite. Granular bentonite was mixed continuously with water and shot on the walls of a tunnel section at the Grimsel Underground Research Laboratory (URL), in Switzerland. The shot-clay was placed to create a layer of bentonite in direct contact with the host rock to avoid preferential water and/or gas flow along the tunnel wall. Samples for an experimental programme were collected during the shooting. Results from an experiment, conducted under controlled total suction to analyse the hydro-mechanical behaviour of the material, are shown.
Water retention and swelling behaviour of granular bentonites for application in Geosynthetic Clay Liner (GCL) systems
Geosynthetic Clay Liner (GCL) systems are used as efficient hydraulic barriers in landfills for the disposal of hazardous municipal wastes. Along with geotextiles, bentonite materials are chosen as one of the primary components of GCLs due to their high retention, adsorption, and swelling capacities. GCLs are manufactured using bentonites at a high total suction and hydrated through the uptake of liquid from the subsoil and the confined material as soon as they are installed. Bentonites may exhibit considerable volume change upon wetting. Depending on the confinement stress, the void ratio may significantly increase with a decrease in suction, particularly at higher degrees of saturation. T…
Water retention behaviour and microstructural evolution of MX-80 bentonite during wetting and drying cycles
MX-80 bentonite used in engineered barrier systems would be subjected to wetting and drying cycles. To assess the response of the material under such circumstances, a comprehensive experimental characterisation of the water retention behaviour of compacted MX-80 granular bentonite was performed in this study. A new methodology is proposed to investigate this behaviour under a constant volume condition for specimens prepared at different dry densities. The material was subjected to different hydraulic paths, including cyclic variations of the water content. As a result, an irreversible modification of the retention behaviour was observed when the material approached a fully saturated state …