0000000000355129

AUTHOR

Per Bruheim

0000-0002-7851-8083

showing 2 related works from this author

Metabolic Profiling of Glucose-Fed Metabolically Active Resting Zymomonas mobilis Strains

2020

Zymomonas mobilis is the most efficient bacterial ethanol producer and its physiology is potentially applicable to industrial-scale bioethanol production. However, compared to other industrially important microorganisms, the Z. mobilis metabolome and adaptation to various nutritional and genetic perturbations have been poorly characterized. For rational metabolic engineering, it is essential to understand how central metabolism and intracellular redox balance are maintained in Z. mobilis under various conditions. In this study, we applied quantitative mass spectrometry-based metabolomics to explore how glucose-fed non-growing Z. mobilis Zm6 cells metabolically adapt to change of oxygen avai…

aerobic respiration0106 biological sciences0301 basic medicineEntner–Doudoroff pathwayCellular respirationEndocrinology Diabetes and MetabolismMetabolitelcsh:QR1-50201 natural sciencesBiochemistryZymomonas mobilislcsh:MicrobiologyArticle<i>zymomonas mobilis</i>Metabolic engineering03 medical and health scienceschemistry.chemical_compoundMetabolomics010608 biotechnologyMetabolomeGlycolysisliquid chromatography-tandem mass spectrometryMolecular BiologybiologyChemistryZymomonas mobilisMetabolismbiology.organism_classificationmetabolomics030104 developmental biologyBiochemistrykinetic modellingMetabolites
researchProduct

Improvement of acetaldehyde production in Zymomonas mobilis by engineering of Its aerobic metabolism

2019

Acetaldehyde is a valuable product of microbial biosynthesis, which can be used by the chemical industry as the entry point for production of various commodity chemicals. In ethanologenic microorganisms, like yeast or the bacterium Zymomonas mobilis, this compound is the immediate metabolic precursor of ethanol. In aerobic cultures of Z. mobilis, it accumulates as a volatile, inhibitory byproduct, due to the withdrawal of reducing equivalents from the alcohol dehydrogenase reaction by respiration. The active respiratory chain of Z. mobilis with its low energy-coupling efficiency is well-suited for regeneration of NAD+ under conditions when acetaldehyde, but not ethanol, is the desired catab…

Microbiology (medical)Cellular respirationlcsh:QR1-502Respiratory chainZymomonas mobilisMicrobiologylcsh:MicrobiologyMetabolic engineering03 medical and health scienceschemistry.chemical_compoundstoichiometric model030304 developmental biologyAlcohol dehydrogenaseOriginal Research2. Zero hunger0303 health sciencesEthanolbiology030306 microbiologyZymomonas mobilisNADH dehydrogenaseAcetaldehydebiology.organism_classificationmetabolomicschemistryBiochemistrybiology.proteinmetabolic engineeringacetaldehyde
researchProduct