0000000000355322

AUTHOR

Joerg Betschinger

0000-0002-2627-8479

showing 3 related works from this author

De novo mutations in the X-linked TFE3 gene cause intellectual disability with pigmentary mosaicism and storage disorder-like features

2020

IntroductionPigmentary mosaicism (PM) manifests by pigmentation anomalies along Blaschko’s lines and represents a clue toward the molecular diagnosis of syndromic intellectual disability (ID). Together with new insights on the role for lysosomal signalling in embryonic stem cell differentiation, mutations in the X-linked transcription factor 3 (TFE3) have recently been reported in five patients. Functional analysis suggested these mutations to result in ectopic nuclear gain of functions.Materials and methodsSubsequent data sharing allowed the clustering of de novo TFE3 variants identified by exome sequencing on DNA extracted from leucocytes in patients referred for syndromic ID with or with…

0301 basic medicineMESH: Basic Helix-Loop-Helix Leucine Zipper Transcription Factors[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyIntellectual disabilityTFE3Biology[SDV.GEN.GH] Life Sciences [q-bio]/Genetics/Human geneticsMESH: Intellectual Disability03 medical and health sciencesExon0302 clinical medicineMESH: Whole Exome SequencingMESH: ChildIntellectual disabilityGeneticsmedicineMissense mutationGeneGenetics (clinical)Exome sequencingPigmentary mosaicismMESH: Pathology MolecularGeneticsMESH: AdolescentMESH: HumansAlternative splicingLysosomal metabolismMESH: Child Preschool[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyMESH: Adultmedicine.diseasePhenotypeMESH: InfantMESH: MaleTFE3Storage disorder030104 developmental biologyMESH: Genes X-Linked[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsMESH: Young AdultMESH: EpilepsyMESH: MosaicismMESH: Pigmentation DisordersMESH: Female030217 neurology & neurosurgery
researchProduct

Lysosomal Signaling Licenses Embryonic Stem Cell Differentiation via Inactivation of Tfe3

2019

International audience; Self-renewal and differentiation of pluripotent murine embryonic stem cells (ESCs) is regulated by extrinsic signaling pathways. It is less clear whether cellular metabolism instructs developmental progression. In an unbiased genome-wide CRISPR/Cas9 screen, we identified components of a conserved amino-acid-sensing pathway as critical drivers of ESC differentiation. Functional analysis revealed that lysosome activity, the Ragulator protein complex, and the tumor-suppressor protein Folliculin enable the Rag GTPases C and D to bind and seclude the bHLH transcription factor Tfe3 in the cytoplasm. In contrast, ectopic nuclear Tfe3 represses specific developmental and met…

MaleTranscription GeneticGTPaseGTP PhosphohydrolasesPATHWAYMice0302 clinical medicineNeural Stem CellsCRISPRTUMOR-SUPPRESSORCell Self RenewalPhosphorylationSPECIFICATIONdevelopmental disorder0303 health sciencesGenomeBasic Helix-Loop-Helix Leucine Zipper Transcription FactorsCell DifferentiationMouse Embryonic Stem CellsFlcndifferentiationCell biologymedicine.anatomical_structuremTORMolecular MedicineFemaleSignal transductionProtein BindingSignal TransductionRECRUITMENTBiology03 medical and health sciencesRag GTPasesLysosomeGeneticsmedicineAnimalsHumansPoint MutationNAIVE PLURIPOTENCYAMINO-ACID LEVELSTranscription factorAllelesPI3K/AKT/mTOR pathway030304 developmental biologyCOMPLEXFOLLICULINRagulatorCell Biologypluripotencyembryonic stem cellEmbryonic stem cellTfe3[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsCytoplasmLysosomes030217 neurology & neurosurgeryCell Stem Cell
researchProduct

Shortstop Recruits EB1/APC1 and Promotes Microtubule Assembly at the Muscle-Tendon Junction

2003

Abstract Background: Shot (previously named Kakapo), is a Drosophila Plakin family member containing both Actin binding and microtubule binding domains. In Drosophila , it is required for a wide range of processes, including axon extension, dendrite formation, axonal terminal arborization at the neuromuscular junction, tendon cell development, and adhesion of wing epithelium. Results: To address how Shot exerts its activity at the molecular level, we investigated the molecular interactions of Shot with candidate proteins in mature larval tendon cells. We show that Shot colocalizes with EB1/APC1 and with a compact microtubule array extending between the muscle-tendon junction and the cuticle…

Blotting WesternFluorescent Antibody TechniqueBiologyTransfectionMicrotubulesCell junctionGeneral Biochemistry Genetics and Molecular BiologyTendonsTendon cellMicrotubuleAnimalsDrosophila ProteinsCytoskeletonActinPlakinAgricultural and Biological Sciences(all)Biochemistry Genetics and Molecular Biology(all)MusclesAxon extensionMicrofilament ProteinsfungiPrecipitin TestsCell biologyCytoskeletal ProteinsIntercellular JunctionsLarvaMuscle tendon junctionDrosophilaGeneral Agricultural and Biological SciencesCurrent Biology
researchProduct