0000000000355834

AUTHOR

H. An

showing 2 related works from this author

Measurement of matter-antimatter differences in beauty baryon decays

2017

Differences in the behaviour of matter and antimatter have been observed in $K$ and $B$ meson decays, but not yet in any baryon decay. Such differences are associated with the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as $C\!P$ violation. Using data from the LHCb experiment at the Large Hadron Collider, a search is made for $C\!P$-violating asymmetries in the decay angle distributions of $\Lambda^0_b$ baryons decaying to $p\pi^-\pi^+\pi^-$ and $p\pi^-K^+K^-$ final states. These four-body hadronic decays are a promising place to search for sources of $C\!P$ violation both within and beyond the Standard Model of particle…

Physics beyond the Standard ModelHadrontransformation [parity]General Physics and Astronomy7000 GeV-cms8000 GeV-cmsviolation [CP]decay [meson]01 natural sciencesHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - Experiment (hep-ex)antimatterscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]AntimatèriaDecays of bottom mesons Flavor symmetriesB mesonLHCb - Abteilung HintonPhysicsLarge Hadron Collider02 Physical Sciencesnew physicsCabibbo–Kobayashi–Maskawa matrixPhysicsparity: transformationParticle physicsFlavor symmetriesCharge conjugation parity time reversal and other discrete symmetrieDecays of bottom mesonsasymmetry: CPCERN LHC CollCP-VIOLATION; LAMBDA(B)meson: decayangular distribution [decay]AntimatterPhysical SciencesCP violationLHCcolliding beams [p p]Lambda/b0: hadronic decayParticle Physics - Experimentp p: scatteringParticle physicsAntimatterFluids & PlasmasPhysics MultidisciplinaryLambda/b0 --> p pi- K+ K-FOS: Physical scienceshadronic decay [Lambda/b0]Lambda/b0 --> p pi+ 2pi-CP [asymmetry]530Lambda/b0 --> p pi+ 2pi-Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elementNONuclear physicsPhysics and Astronomy (all)LAMBDA(B)TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesCP: violationdecay: angular distributionddc:530010306 general physicsLarge Hadron Collider (France and Switzerland)01 Mathematical SciencesScience & Technologycharge conjugation010308 nuclear & particles physicshep-exLambda/b0 --> p pi- K+ K-High Energy Physics::PhenomenologyGran Col·lisionador d'HadronsLHC-BHEPBaryonLHCbCP-VIOLATIONCKM matrixHadronic decays of baryonBottom baryons (|B|>0)High Energy Physics::ExperimentFísica de partículesExperimentsp p: colliding beamsstatisticalexperimental results
researchProduct

ALS-linked FUS mutations confer loss and gain of function in the nucleus by promoting excessive formation of dysfunctional paraspeckles

2019

Mutations in the FUS gene cause amyotrophic lateral sclerosis (ALS-FUS). Mutant FUS is known to confer cytoplasmic gain of function but its effects in the nucleus are less understood. FUS is an essential component of paraspeckles, subnuclear bodies assembled on a lncRNA NEAT1. Paraspeckles may play a protective role specifically in degenerating spinal motor neurons. However it is still unknown how endogenous levels of mutant FUS would affect NEAT1/paraspeckles. Using novel cell lines with the FUS gene modified by CRISPR/Cas9 and human patient fibroblasts, we found that endogenous levels of mutant FUS cause accumulation of NEAT1 isoforms and paraspeckles. However, despite only mild cytoplasm…

Cell NucleusResearchAmyotrophic Lateral SclerosisIntranuclear Inclusion BodiesNEAT1lcsh:RC346-429Cell LineLoss of Function MutationCell Line TumorFused in sarcoma (FUS)ParaspeckleHumansProtein IsoformsRNA-Binding Protein FUSRNA Long NoncodingAmyotrophic lateral sclerosis (ALS)CRISPR-Cas Systemslcsh:Neurology. Diseases of the nervous systemActa Neuropathologica Communications
researchProduct