0000000000356736

AUTHOR

G. Knöchlein

Virtual Compton scattering off the nucleon in chiral perturbation theory

We investigate the spin-independent part of the virtual Compton scattering (VCS) amplitude off the nucleon within the framework of chiral perturbation theory. We perform a consistent calculation to third order in external momenta according to Weinberg's power counting. With this calculation we can determine the second- and fourth-order structure-dependent coefficients of the general low-energy expansion of the spin-averaged VCS amplitude based on gauge invariance, crossing symmetry and the discrete symmetries. We discuss the kinematical regime to which our calculation can be applied and compare our expansion with the multipole expansion by Guichon, Liu and Thomas. We establish the connectio…

research product

Generalized polarizabilities of the nucleon in chiral effective theories

Using the techniques of chiral effective field theories we evaluate the so called generalized polarizabilities of the nucleon, which characterize the structure dependent components in virtual Compton scattering (VCS) as probed in the electron scattering reaction e N \to e' N gamma. Results are given for both spin-dependent and spin-independent structure effects to O(p^3) in SU(2) Heavy Baryon Chiral Perturbation Theory and to O(epsilon^3) in the SU(2) Small Scale Expansion. Finally we compare our calculations with results from the pioneering VCS experiment on the proton from Mainz.

research product

Photo- and Electroproduction of Eta Mesons on Nucleons and Nuclei

Eta photo- and electroproduction off the nucleon is investigated in an approach that contains Born terms, vector meson and nucleon resonance contributions. In a comparison with the new Mainz data we find a large sensitivity on the elementary ηN N coupling. Our analysis results in a pseudoscalar ηN N coupling with a coupling constant of g ηN N 2 /4π=0.4. Furthermore, we also study coincidence cross sections for eta electroproduction and present calculations for structure functions and kinematical conditions that are most sensitive to the S 11(1535) and the D 13(1520) resonances. Finally, we show results on the inclusive eta photoproduction off complex nuclei with a very good agreement with r…

research product

Structure analysis of the virtual Compton scattering amplitude at low energies

We analyze virtual Compton scattering off the nucleon at low energies in a covariant, model-independent formalism. We define a set of invariant functions which, once the irregular nucleon pole terms have been subtracted in a gauge-invariant fashion, is free of poles and kinematical zeros. The covariant treatment naturally allows one to implement the constraints due to Lorentz and gauge invariance, crossing symmetry, and the discrete symmetries. In particular, when applied to the $ep\to e'p'\gamma$ reaction, charge-conjugation symmetry in combination with nucleon crossing generates four relations among the ten originally proposed generalized polarizabilities of the nucleon.

research product

Rare decay η→ππγγ in chiral perturbation theory

We investigate the rare radiative {eta} decay modes {eta}{r_arrow}{pi}{sup +}{pi}{sup {minus}}{gamma}{gamma} and {eta}{r_arrow}{pi}{sup 0}{pi}{sup 0}{gamma}{gamma} within the framework of chiral perturbation theory at {ital O}({ital p}{sup 4}). We present photon spectra and partial decay rates for both processes as well as a Dalitz contour plot for the charged decay. {copyright} {ital 1996 The American Physical Society.}

research product

Generalized Polarizabilities and the Chiral Structure of the Nucleon

We are studying the electron scattering process e p to e' p' gamma in order to obtain information on the genuine virtual Compton scattering (VCS) process gamma^* N to gamma N. In addition to the two kinematical variables of real Compton scattering, e.g. the scattering angle theta and the energy omega' of the outgoing photon, the invariant amplitude for VCS depends on a third kinematical variable, which we choose as the absolute value of the three-momentum transfer to the nucleon. The structure-dependent coefficients in the VCS amplitude therefore acquire a momentum dependence and are termed ``generalized polarizabilities'' of the nucleon in analogy to real Compton scattering. Utilizing the …

research product

Analysis of resonance multipoles from polarization observables in eta photoproduction

A combined analysis of new eta photoproduction data for total and differential cross sections, target asymmetry and photon asymmetry is presented. Using a few reasonable assumptions we perform the first model-independent analysis of the E0+, E2- and M2- eta photoproduction multipoles. Making use of the well-known A3/2 helicity amplitude of the D13(1520) state we extract its branching ratio to the eta-N channel, Gamma(eta,N)/Gamma = (0.08 +- 0.01)%. At higher energies, we show that the photon asymmetry is extremely sensitive to small multipoles that are excited by photons in the helicity 3/2 state. The new GRAAL photon asymmetry data at higher energy show a clear signal of the F15(1680) exci…

research product

Photo- and electroproduction of eta mesons

Eta photo- and electroproduction off the nucleon is investigated in an effective lagrangian approach that contains Born terms and both vector meson and nucleon resonance contributions. In particular, we review and develop the formalism for coincidence experiments with polarization degrees of freedom. The different response functions appearing in single and double polarization experiments have been studied. We will present calculations for structure functions and kinematical conditions that are most sensitive to details of the lagrangian, in particular with regard to contributions of nucleon resonances beyond the dominant $S_{11}$(1535) resonance.

research product